11,486 research outputs found

    A translator writing system for microcomputer high-level languages and assemblers

    Get PDF
    In order to implement high level languages whenever possible, a translator writing system of advanced design was developed. It is intended for routine production use by many programmers working on different projects. As well as a fairly conventional parser generator, it includes a system for the rapid generation of table driven code generators. The parser generator was developed from a prototype version. The translator writing system includes various tools for the management of the source text of a compiler under construction. In addition, it supplies various default source code sections so that its output is always compilable and executable. The system thereby encourages iterative enhancement as a development methodology by ensuring an executable program from the earliest stages of a compiler development project. The translator writing system includes PASCAL/48 compiler, three assemblers, and two compilers for a subset of HAL/S

    Disentanglement and Decoherence without dissipation at non-zero temperatures

    Get PDF
    Decoherence is well understood, in contrast to disentanglement. According to common lore, irreversible coupling to a dissipative environment is the mechanism for loss of entanglement. Here, we show that, on the contrary, disentanglement can in fact occur at large enough temperatures TT even for vanishingly small dissipation (as we have shown previously for decoherence). However, whereas the effect of TT on decoherence increases exponentially with time, the effect of TT on disentanglement is constant for all times, reflecting a fundamental difference between the two phenomena. Also, the possibility of disentanglement at a particular TT increases with decreasing initial entanglement.Comment: 3 page

    A Research-Based Curriculum for Teaching the Photoelectric Effect

    Get PDF
    Physics faculty consider the photoelectric effect important, but many erroneously believe it is easy for students to understand. We have developed curriculum on this topic including an interactive computer simulation, interactive lectures with peer instruction, and conceptual and mathematical homework problems. Our curriculum addresses established student difficulties and is designed to achieve two learning goals, for students to be able to (1) correctly predict the results of photoelectric effect experiments, and (2) describe how these results lead to the photon model of light. We designed two exam questions to test these learning goals. Our instruction leads to better student mastery of the first goal than either traditional instruction or previous reformed instruction, with approximately 85% of students correctly predicting the results of changes to the experimental conditions. On the question designed to test the second goal, most students are able to correctly state both the observations made in the photoelectric effect experiment and the inferences that can be made from these observations, but are less successful in drawing a clear logical connection between the observations and inferences. This is likely a symptom of a more general lack of the reasoning skills to logically draw inferences from observations.Comment: submitted to American Journal of Physic

    A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data

    Get PDF
    Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved

    Bubble-Driven Inertial Micropump

    Full text link
    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel or continues to grow axially when it reaches the reservoir. In the non-axial regime the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical principles of the pump, a phenomenological one-dimensional model is developed and solved. A linear array of micropumps has been built using silicon-SU8 fabrication technology, and semi-continuous pumping across a 2 mm-wide channel has been demonstrated experimentally. Measured variation of the net flow with fluid viscosity is in excellent agreement with simulation results.Comment: 18 pages, 18 figures, single colum

    Introduction to the computational structural mechanics testbed

    Get PDF
    The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules

    Magneto-elastic coupling and competing entropy changes in substituted CoMnSi metamagnets

    Full text link
    We use neutron diffraction, magnetometry and low temperature heat capacity to probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to establish the origin of the entropy change that occurs at the metamagnetic transition in such compounds. We find a large difference between the electronic density of states of the antiferromagnetic and high magnetisation states. The magnetic field-induced entropy change is composed of this contribution and a significant counteracting lattice component, deduced from the presence of negative magnetostriction. In calculating the electronic entropy change, we note the importance of using an accurate model of the electronic density of states, which here varies rapidly close to the Fermi energy.Comment: 11 pages, 9 figures. Figures 4 and 6 were updated in v2 of this preprint. In v3, figures 1 and 2 have been updated, while Table II and the abstract have been extended. In v4, Table I has updated with relevant neutron diffraction dat

    Free-volume kinetic models of granular matter

    Get PDF
    We show that the main dynamical features of granular media can be understood by means of simple models of fragile-glass forming liquid provided that gravity alone is taken into account. In such lattice-gas models of cohesionless and frictionless particles, the compaction and segregation phenomena appear as purely non-equilibrium effects unrelated to the Boltzmann-Gibbs measure which in this case is trivial. They provide a natural framework in which slow relaxation phenomena in granular and glassy systems can be explained in terms of a common microscopic mechanism given by a free-volume kinetic constraint.Comment: 4 pages, 6 figure

    Prednisolone improves the response to primary endocrine treatment for advanced breast cancer.

    Get PDF
    Two hundred and twenty patients with progressive advanced breast cancer were given primary endocrine treatment (PET) according to menstrual status. Pre-menopausal patients received ovarian irradiation (O) and post-menopausal tamoxifen 10 mg bd (T). Patients were randomised to receive either no additional treatment or prednisolone 5 mg bd (P). Similar results were observed in each menstrual subgroup. In 194 evaluable patients, the response to PET + P was 49% and to PET alone 30% (P less than 0.01). P increased the median duration of response from 9 to 14 months (P less than 0.002) and the median time to disease progression from 5 to 9 months (P less than 0.001). Response to P after O or T alone occurred in only 2/62 (3%). Median survival in patients randomised to receive P at the outset of PET was prolonged by 4 months (P less than 0.05). The addition of P significantly improves the response to O or T in the treatment of advanced breast cancer

    Self-intersection local time of planar Brownian motion based on a strong approximation by random walks

    Full text link
    The main purpose of this work is to define planar self-intersection local time by an alternative approach which is based on an almost sure pathwise approximation of planar Brownian motion by simple, symmetric random walks. As a result, Brownian self-intersection local time is obtained as an almost sure limit of local averages of simple random walk self-intersection local times. An important tool is a discrete version of the Tanaka--Rosen--Yor formula; the continuous version of the formula is obtained as an almost sure limit of the discrete version. The author hopes that this approach to self-intersection local time is more transparent and elementary than other existing ones.Comment: 36 pages. A new part on renormalized self-intersection local time has been added and several inaccuracies have been corrected. To appear in Journal of Theoretical Probabilit
    • …
    corecore