
• y

NASA Technical Memorandum 89096

introduction to the Computational Structural

Mechanics Testbed

C.G. Lotts,W.H. Greene, S.L.McCleary,N.F. Knight,Jr.,S.S.Paulson,and R.F,.Gillian

September 1987

(_ASA-T_-89096) I_CEOC_I£_ _C TB_
CCMPUTA_LGNAL _c_C_URAL REC_A_IC_ _ES_BED

(_IASA) 17q p _vail: _15 I_£ _CS/_F A01
CSCL 20K

G3/39

N87-2EC57

NASA
National Aeronautics and
Space Administration

Langley Research Center

Hampton, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19870018624 2020-03-20T10:08:18+00:00Z

Introduction to the Computational Structural Mechanics Testbed

Table of Contents

Section

o

2.

3.

0

.

.

.

Summary

Introduction

NICE

3.1 Overview of NICE

3.2 NICE Directives

3.3 NICE CLIP/GAL-Processor Interface

3.4 Creating and Using NICE Procedures

SPAR

4.1 Overview of SPAR

4.2 SPAR Control Language and Data Management

4.3 SPAR Processors

The CSM Testbed

2.! Integration of NICE and SPAR

5.2 Installing and Running NICE/SPAR on VMS

5.3 NICE/SPAR Installed Analysis Modules

5.4 Example Structural Analysis Problems

Extending NICE/SPAR

6.1 Techniques for Interfacing with the NICE/SPAR Database
,) ('..;.,1_1:--^_ c^. _,,i;_ N.T^,,, D,_

6.3 NICE/SPAR Processor Integration on a VAX/VMS System

6.4 Installing User Elements

CSM Research Directions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Composite Toroidal Shell Example

Transient Response of a Cantilever Beam Example
CSM Focus Problem 1

Finite Element Model for Skewed Plate Example

Skewed Plate Example

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

Appendix F.

Description of NICE/SPAR Datasets

Instructions for Installation of the Testbed on VMS

Descriptions of New Testbed Processors

Modifications to SPAR Reference Manual for NICE/SPAR

NICE/SPAR-CLIP/GAL Interface Subroutine Descriptions

Guidelines for Installing User Elements

References

Pa e

1-1

2-1

3-I

4-1

5-1

6-1

7-1

Fig. 1-1

Fig. 2-1

Fig. 3-1

Fig. 4-1

Fig. 5-1

A-1

B-1

C-1

D-1

E-1

F-1

R-1

INTRODUCTION TO THE

COMPUTATIONAL STRUCTURAL MECHANICS TESTBED

1. Summary

The Computational Structural Mechanics testbed development was motivated by re-

quirements for a highly modular and flexible structural analysis system to use as a tool

for research in computational methods and for exploration of new multiprocessor and vec-

tor computer hardware. The new structural analysis system, based on the original SPAR

finite element code and the NiCE System, is described. The system is denoted the CSM

testbed. NICE was developed at Lockheed Palo Alto Research Laboratory and contains

data management utilities, a command language interpreter, and a command language

definition for integrating engineering computational modules. SPAR is a system of pro-

grams used for finite element structural analysis developed for NASA by Lockheed and

Engineering Information Systems, Inc. It includes many complementary structural and

thermal analysis and utility functions which communicate through a common database.

Analysis examples are presented which demonstrate the benefits gained from a combina-

tion of the NICE command language with the SPAR computational modules. Testbed

development to date has been carried out on a DEC VAX/VMS minicomputer; the cur-

rent version is also operational on a DEC MicroVAX running ULTRIX and on a CRAY-2

running UNICOS. Future development will be directed toward UNIX systems running on

multiprocessor and vector computers.

1-1

2. Introduction

Research in computational methods for structural analysishas been severely ham-

pered by the complexity and cost of the software development process,even on traditional

singleprocessor computers. Although the researcher isusually interested in only a small

aspect of the overallanalysisproblem, he isoften forced to construct much of the support-

ing software himself. This time-consuming and expensive approach isfrequently required

because existingsoftware that the researchercould potentiallyexploitisnot documented in

sufficientdetailinternally,may not be suitablebecause of software architecturedesign, or

both. After enduring thistime-consuming software development effort,the researcher may

find that a thorough, complete evaluationof his new method isstillimpossible due to lira-

SOL _w_tre._etbLOlm Ol _m _uppor_mg This is true, for example, in many ::research-oriented"

finite element codes which have a limited element library or have arbitrary restrictions on

how elements of different types can be combined in a single model.

In addition, new computer architectures with vector and multi-processor capabilities

are being manufactured for increased computational speed. Analysis and computational

algorithms that can exploit these new computer architectures need to be developed. For

credibility, these new algorithms should be developed and evaluated in standard, general-

purpose finite element software rather than in isolated research software.

To address the above difficulties in computational methods research, the CSM Group

at NASA Langley Research Center has undertaken the construction of a structural anal-

ysis software "testbed". The testbed provides a system which can be easily modified and

extended by researchers. This is being achieved, in part, by exploiting advances in com-

putational software design such as command languages and data management techniques.

The testbed willbe used by a largegroup of researcherswho need unrestricted access

to allparts of the code, including the data manager and command language. Research on

these elements of software design isneeded because deficienciesin the data management

strategy can have a devastating impact on the performance of a large structural analysis

code, totally masking the relativemerits of competing computational techniques. Fur-

thermore, software designs that exploitmultiprocessor computers must be developed. To

remove allquestions regarding access and use, itwas decided that the testbed should be

public domain software.

The decision to couple NICE and SPAR for the CSM testbed was based on four

considerations. First, the details of the data management system in the original SPAR

and NICE are quite similar. The data manager requests within SPAR processors are

compatible with the NICE entry points. Second, the reliability, utility, and performance

of the SPAR processors have been proven by almost a decade of use. Third, the concept

of a high-level command language controlling the execution of independent computational

modules appears to be an excellent architecture for structural analysis software. Fourth,

both NICE and SPAR are public domain software.

2-1

3. NICE

3.1 Overview of NICE

The NICE (Network of Interactive Computational Elements) system (refs. 1, 2 and 3)

developed at Lockheed Palo Alto Research Laboratories is an example of a modern software

architecture for supporting engineering analyses. The NICE system consists of three major

components: a data manager (GAL), a control language (CLAMP) for controlling analysis

flow, and a command interpreter (CLIP) for interpreting CLAMP directives and decoding

processor commands. Computational modules in the NICE system, called processors, are

independent programs which perform a specific, well-defined task. To enforce modularity,

processors do not communicate explicitly with each other but instead communicate only by

exchanging named data objects in the data base. To utilize these independent processors

in a particular, complex analysis task, CLAMP procedures are written to describe the

analysis to be performed and the algorithm to be used. Processors access the NICE

utilities by calling entry points provided in the NICE object library, implemented as Fortran

77 functions and subroutines. The set of entry points constitutes the CLIP-Processor

Interface.

The NICE control language is a generic language designed to support the NICE system

and to offer program developers the means for building problem-oriented languages. It may

be viewed as a stream of free-field command records read from command sources (the user

terminal, actual files, or processor messages). The source commands are interpreted by a

"filter" utility called CLIP, whose function is to produce object records for consumption by

its user program. The standard operating mode of CLIP is the processor-command mode.

Commands are directly supplied by the user, retrieved from ordinary card-image files,

or extracted from the global database, and submittcd to the running processor. Special

commands, called directives, are processed directly by CLIP; the processor is "out of the

loop". Transition from processor-command to directive mode is automatic. Once the

directive is processed, CLIP returns to processor-command mode. Directives are used to

dynamically change run-environment parameters, to process advanced language constructs

such as macrosymbols and command procedures, to implement branching and cycling, and

to request services of the data manager. CLIP can be used in this way to provide data

to a processor as well as to control the logic flow of the program through a single input

stream. All CLIP directives are available to any processor that uses the CLIP-Processor

interface entry points.

The NICE data management system is accessible to the user directly through the

CLIP directives and to running processors through the GAL-Processor interface. The

global database administered by the NICE-DMS is constituted by sets of data libraries

(GALs) residing on direct-access disk files. Data libraries are collections of named datasets,

which are collections of dataset records. The data library format supported by NICE is

called GAL/82, which can contain nominal datasets made up of named records. Some

of the advantages to using this form of data library are: 1) the order in which records

are defined is irrelevant, 2) the data contained in the records may be accessed from the

3-1

command level, and 3) the record datatype is maintained by the manager; this simplifies

context-directed display operations and automatic type conversion.

3.2 NICE Directives

Directives are special commands that are understood and processed by CLIP and not

transported to the processor. A directive is to CLIP like ordinary input is to the processor.

A directive is distinguished from ordinary input by beginning with a keyword prefixed by

an asterisk. The keyword (directive verb) may be followed by a verb modifier, qualifiers,

and parameters, as required by the syntax of the specific directive. See Reference 2, vols.

1 and 2, for a complete description of the CLAMP language. An interactive HELP facility,

accessed by the ,HELP directive, is built in to NICE to explain CLIP directives.

This section presents a summary of the most useful NICE directives, grouped accord-

ing to their function in the NICE execution environment.

*OPEN

*CLOSE

*TOC

*PRINT

*COPY

,DELETE

*FIND

*RENAME

Global Data Manager Interface

Open data library

Close data library

Print table of contents of library

Print table of contents, dataset record contents, or record

access table of dataset

Copy datasets or dataset records

Delete dataset or record

Returns information on libraries, datasets, or records

Renames dataset or record

,SET PLIB

,PROCEDURE

,CALL

Command Procedure Management

Set procedure library for residence of command procedures

Initiates definition of command procedure

Redirects input to a callable procedure ("calls" a procedure

with optional argument replacement)

*IF

,ELSE

,ELSEIF

*ENDIF

*DO

*ENDDO

*WHILE

*ENDWHILE

Nonsequential Command Processing

Conditional branching construct

Looping construct

While-looping construct

3-2

*JUMP
*RETURN
*END

Transfer control to specifiedlabel

Force exit from command procedure

Terminate definition of command procedure

*DEFINE

*UNDEFINE

,SHOW MACRO

Built-in

macrosymbols

Macrosymbol Directives

Define a macrosymbol or macrosymbol array

Delete macrosymbol(s)

Show macrosymbols

Common constants, mathematical functions,

generic functions, reserved variables, boolean

functions, logical functions, string catenator, string marchers,
and status macros

,RUN

,STOP

SuperClip Directives

Start execution of another program

Stops RUN-initiated execution and restarts the parent processor

*WALLOCATE

*WGET

*WDEF

*WSET

* WPUT

Workpool Directives

Allocate group in the workpool

Read database record into workpool group

Define macrosymbol(s) from workpool group items

Set workpool group items to specified values

Write workpool group to a nominal record

*HELP

*SET

*SHOW

*ADD

*DUMP

*REMARK

*UNLOAD

*LOAD

G_e_ne_ra]. D,, e,.,,,',es.__"___S' ! L_.:

Lists information from NICE HELP file

Sets specified NICE control parameters

Shows specified NICE control parameters

Redirects input to a text file

Dumps contents of any file

Print remark line

Unload contents of GAL library to an ASCII file

Load contents of GAL library from an ASCII file

3.3 NICE CLIP/GAL-Processor Interface

An application program (processor) accesses NICE utilities for command loading and

data management functions by calling entry points provided in the NICE object library.

The entry points are implemented as Fortran 77 subroutines or functions.

3-3

3.3.1 Clip-Processor Entry Points

The most important entry points which control command-loading actions are sum-

marized here. See Reference 2, vol. 3 for a complete description of the usage of the CLIP

entry points.

CLGET

CLREAD

CLPUT

CLIP Control

Get next command image

Get and parse next command

Insert immediate one-line message

NICE also provides many other entry points to enable the running processor to search

the current command for keywords and qualifiers, to retrieve item and run information,

and to evaluate macrosymbols and expressions. This is the mechanism provided to enable

the processor developer to build his own problem-oriented language.

3.3.2 GAL-Processor Entry Points

The most useful entry points provided for accessing NICE GAL/82 formatted libraries

are summarized here. See Reference 3 for a complete description of the GAL entry point

usage.

GMOPEN,LMOPEN

GMCLOS

L_ibrary__File Operations

Open library

Close library

GMPUNT,LMPUNT

GMGENT

GMFIND,LMFIND

GMDENT,GMDEST
GMENAB

GMLINT,GMLIST

Nominal Dataset Operations

Put name in Table of Contents

Get name from Table of Contents

Find occurrence

Delete

Enable

List Table of Contents

GMPUTC

GMPUTN

GMGETC

GMGETN

Named Record _Op_e_rat_ons

Put record (character type)

Put record (numeric type)

Get record (character type)

Get record (numeric type)

3-4

GMBUDN
GMCODN
GMCORN
GMSIGN

Supplemental Operations

Break up dataset name
Construct dataset name

Construct record name

Enter processor signature

3.4 Creating and Using NICE Procedures

The command procedure capability of CLIP allows the insertion of a set of predefined

command records at any point in the command source stream. Selected portions of the
-".... L_ '1 -1 1- 1_ _--1 L-. L___a.'¢'_-1 .'_ .tl- -1 L"--11_)

Commands need not be processed sequentially; branching and looping constructions may

be implemented via the DO, IF and WHILE directives. CLIP procedures bear some

similarities to Fortran subroutines; however, the source text is interpreted, rather than

compiled, by CLIP. The procedure definition is presented to CLIP, typically by ADDing

the source file that contains it. CLIP interprets the source and puts out a callable version

into an ordinary data file or a data library. This version can be invoked by a CALL

directive referring to the procedure name and including actual arguments to replace the

formal arguments in the procedure definition.

3.4.1. Creating a procedure

a. Edit a file containing the source for one or more procedures.

b. Execute NICESPAR and "pre-process" the procedure(s) a_s follows:

Use the *SET PLIB directive if you want the compiled procedures to be stored in

a GAL library. By default, PLIB is zero, so they are stored in an ordinary direct-

access file. (This option should be used if you will be using "NICE/SPAR external

processors" or invoking processors via the *RUN directive.)

Use the *ADD directive to make NICESPAR read the procedures from the source

file, process them, and store them according to the PLIB setting.

3.4.2. Using a procedure

Use the *SET PLIB directive to specify where the "callable" procedures reside. Then

use the *CALL directive to invoke the procedure with argument substitution as required.

The *CALL directive may be used in the primary input stream or in another NICE pro-
cedure.

3.4.3. Example of creation and use of a procedure

The source code for a procedure named NLSTATIC1 resides on a file named

NLSTATIC1.CLP.

3-5

"Pre-process" the NLSTATIC1 procedure to a direct access file named

NLSTATIC1.DAT:

$ NICESPAR

,add NLSTATIC1.CLP

,eof

! Run NICE/SPAR (VAX/VMS)

• read input from file

• terminate execution

Execute the NLSTATIC1 procedure in the NICE/SPAR environment:

$ NICESPAR

*open I TEST1.L01
,set echo=off

*call NLSTATICI (Database = TESTI.L01 ; --

beg_step = 1 ; --
max_steps = 10 ; --
max_iters = 7 ; --

beg_load = .01 ; --
max_load = 1.00 ; --

Nominal_DB = TESTI.RESULTS ; --
Nominal DS = RESPONSE.HISTORY)

[xqt EXIT

3-6

4. SPAR

4.1 Overview of SPAR

The computer program for Structural Performance Analysis and Redesign (SPAR)

(Ref. 4) was developed in the 1970's by Lockheed Missiles and Space Company and by

Engineering Information Systems, Incorporated. SPAR had its genesis in analysis tech-

nology described in Ref. 5. Early structural analysis programs which incorporated that

technology included FRAME66 (circa 1966) and SNAP (circa 1970). In 1973, the concept

of independent processors communicating through a global data base was demonstrated

in the SPAR structural analysis system. Thermal analysis capabilities were added to the

system in 1979 (Ref. 6).

The SPAR system was developed to perform stress, buckling, vibration, and thermal

analysis on linear structural systems using the finite element approach. SPAR computes

static deflections and stresses, natural vibration frequencies and modes, and buckling loads

and mode shapes of linear finite element structural models. The structural models are

composed of finite elements connected at specified joints, which can have three translational

and three rotational components of deflection. Finite elements which are currently available

for simulating the stiffness characteristics of a structure include axial bars, beams of general

cross section, triangular and quadrilateral plates having an option to specify coupled or

uncoupled membrane and bending stiffness, quadrilateral shear panels, and 4-, 6-, and

8-node solid elements. The element formulation is based on the assumed-stress hybrid

formulation (Pian, Ref. 7). Properties of the plates may be specified as layers in a laminate

of composite materials, and there is provision for warping of the quadrilateral plate element.

Mass properties of a structure are represented by structural and nonstructural masses
• . • .,1 ,.fr | __J,assocla_ea wt_n the ' ' and ' " " • masses at ,L_ :_:_,_Stillness oy (-Oll(;e!! i,r_teuelell"len_s ,, __.... JOlll I:_i. ,ULld_IA ! 11_

data can include any or all of the following categories: point forces or moments acting at the

joints, specified joint motions, inertial loading, thermal or pressure loads, and initial strains

in individual elements• Linear and nonlinear steady state and transient thermal analysis

may be performed with the thermal element repertoire including conduction, convection,

mass-transport, integrated, and radiation elements.

4.2 SPAR Control Language and Data Management

The SPAR system command language allows the user to design execution sequences

optimally suited to the requirements of each individual application. However, no looping,

conditional execution, or argument replacement is allowed in the language• Each of the

SPAR processors may be invoked with a single command. All data input is accepted in free-

field format. The SPAR input decoder recognizes integer, floating-point, and alphanumeric

data.

4-1

Individual processorswithin the SPAR system are able to communicate automatically

through a body of information known as the data complex. The data complex contains one

or more libraries, within which may reside any number of datasets produced by the SPAR

processors. Through the data complex, SPAR processors are able to generate, store, locate,

and access all of the information needed to perform a particular analysis. All information

generated in a run may be retained in the data complex, thereby remaining available for use

in future runs. This retention is accomplished automatically without complicated restart

procedures and without requiring the user to be concerned with the internal structure of

the data complex.

There are several standard forms of dataset structures that are used by almost all

SPAR programs. Four such dataset forms are designated TABLE, SYSVEC, ELDATA,

and ALPHA. TABLE is a generalized dataset form for the storage of almost any type of

data. Data such as node-point position coordinates and nodal temperatures are stored in

TABLE format. SYSVEC is a special case of the TABLE form. SYSVEC is used primarily

to represent the displacements and rotations at all points in a structure, and the forces and

moments acting on all joints. This form is also used for diagonal mass matrices. ELDATA

is a data form used to represent certain categories of data bearing a one-to-one relationship

with structural elements of a given type, such as element pressure or temperature loads.

The ALPH_ dataset form is used to store lines of alpha-numeric text, such as static load
case titles.

4.3 SPAR Processors

The SPAR processors TAB, ELD, E, and EKS are used to generate, and store in the

data complex, datasets that define the finite element model of the structure. TAB and

ELD are used to generate the basic definition of the structure. Subprocessors within TAB

translate user input data into tables of data such as joint locations, material constants,

and section properties. Subprocessors in ELD translate user input data into data tables

that define individual finite elements of various types. Using the data produced by TAB

and ELD, processors E and EKS generate a group of datasets, collectively known as the

E-state, that contain a complete description of every element in the structure including

details of element geometry and intrinsic stiffness matrices. TAB contains subprocessors

which generate tables of material constants, section properties, joint locations, and various

other datasets comprising a substantial portion of the definition of the structure. TAB

may be used to create new datasets and to update existing datasets. Models may be mod-

ified and extended without extensive re-entering of existing input data. ELD translates

element definition data from user input into datasets whicb are usable by other SPAR

processors. Elements may be defined individually, through a variety of mesh generators

or with combinations of both. An element is defined by specifying the joints to which it

is connected and by pointers to applicable entries in tables, such as section properties and

material constants. As the ELD input is processed, extensive error checks are performed.

The E processor constructs, in skeletal form, an "element information packet" for each

element in the structure. The E processor supplies this packet with general information

4-2

such as connected joint numbers and table reference numbers, material constants, geo-

metrical data, and section property data. In addition, the system mass matrix, which is

in lumped-mass diagonal form, is generated. The EKS processor completes the "element

information packets" by computing and inserting intrinsic stiffness and stress matrices.

The six processors TOPO, K, M, KG, INV, and PS are directly associated with the

assembly, factoring, and display of SPAR-format system matrices. SPAR uses a procedure

for solving high-order systems of linear equations of the kind which occur in displacement

method finite element analysis. The system stiffness matrix is regarded as an array of sub-

matrices; each sub-matrix is of size n-by-n, where n is the number of degrees of freedom

at each joint. The non-zero sub-matrices in a system stiffness are those corresponding to

pairs of joints connected by elements. Accordingly, in all but the smallest finite element

models, only a small fraction of the sub-matrices are non-zero. The characterizing feature

of the SPAR procedure is that it operates exclusively with data contained in the non-zero

sub-matrices; this virtually eliminates the unessential arithmetic and wasted storage space

associated with conventional band matrix techniques.

Processor TOPO analyzes element interconnection topology and creates the datasets

KMAP and AMAP. KMAP is used by processors K, M, and KG to guide assembly of

system stiffness and mass matrices in the SPAR standard sparse-matrix format. AMAP

is used by processor INV in factoring system matrices. The K processor assembles uncon-

strained system stiffness matrices in the sparse-matrix format. The M processor assembles

unconstrained system consistent mass matrices using only the structural and nonstructural

distributed mass associated with the elements. The KG processor forms and assembles un-

constrained system initial stress (or geometric) stiffness matrices based on the stress state

currently embedded in the E-state data_et. The INV processor forms and factors assem-

bled system matrices in the sparse-matrix format subject to specific constraint sets which

have been defined in the processor TAB. SPAR-format matrices and factored SPAR-format

matrices may be printed with the PS processor.

The SPAR processors AUS, DCU, and VPRT are general utility programs for use

in execution of the SPAR system. The AUS processor is an arithmetic utility program

performing an array of functions in the areas of: matrix arithmetic, construction, edit-

ing, and modification of data tables. The DCU processor is a set of utility functions for

management of the data complex. The VPRT processor is used to display any dataset

in the SYSVEC format (e.g., eigenveetors, static displacements, reactions, and nodal load

vectors).

4-3

Basic analysis computational functions are performed in processors SSOL, GSF, PSF,

EIG, and DR. SSOL computes displacements and reactions due to a given set of nodal

loads (e.g., point loads, equivalent nodal loads due to pressure). GSF generates datasets

containing element stress and internal load information. The PSF processor is used to print

element stresses and internal load data in GSF created datasets. The EIG processor solves

linear vibration and bifurcation buckling eigenproblems. EIG implements an iterative

process consisting of a Stodola (matrix iteration) procedure followed by a Rayleigh-Ritz

procedure. This process is used repetitively resulting in successively refined approximations

of the eigenvectors associated with a specified number of eigenvalues. DR computes the

transient response of an uncoupled system using a matrix series expansion method.

Thermal analysis functions are performed in processors TGEO, MTP, VIEW, TRTA,

TRTG, TAFP, TRTB, SSTA, TADS and TAK. TGEO computes element local coordinates

and performs element geometry checks. MTP computes fluid mass-transport rates. VIEW

computes radiation view factors. TRTA, TRTB, and TRTG generate transient solutions

by explicit, implicit, and GEAR methods, respectively. TAFP computes element and nodal

heat rates. SSTA generates linear or nonlinear steady state solutions. TADS and TAK are

utility processors for debugging and dataset format conversion.

4-4

5. The CSM Testbed

5.1 Integration of NICE and SPAR

NICE/SPAR is structured as a NICE "macroprocessor" with a central executive mod-

ule which calls the installed SPAR processors as subroutines. The SPAR processors are

data-coupled through the common global database, each interfacing with CLIP through

the common input routines and with GAL through a small set of database interface rou-

tines. The macroprocessor configuration was selected for efficiency considerations related

to opening and closing data base files. User-developed processors may be implemented as

"external processors", which are independent executable programs that may be invoked

from the NiCE/SPAR command stream.

Because the data management philosophy of NICE is similar to the SPAR approach,

the installation of the SPAR. computational processors under NICE was relatively straight-

forward. Usage descriptions of the primary SPAR processor/NICE data management inter-

face subroutines are given in Appendix E. These routines (DAL, RIO, TOCO and LTOC)

are used by the existing NICE/SPAR processors as the bridge between the SPAR data

management method and the NICE nominal dataset/named data record utilities.

NICE/SPAR data libraries are written to disk files named (by default) NS.Lxx, where

xx is the library number (01-30). Most processors use library number 1. However, by

using the CLAMP *OPEN directive, a user can explicitly associate any legal external

file name with a library. The data libraries are in NICE/(_AL82 format; datasets are

nominal datasets using the same naming convention as SPAR,. Records of the datasets are

named records (currently implemented with all records simply named DATA); datasets
itt d SPAR k_^.l A _ _DAD a_, _ Th_UIU(IN. (Jl t)llE | _,_#i IIare wr ei-i as one recor per , _,,:, ,,, u,_,, o_,,,,_,_. ,,,,

current NICE/SPAR dataset contents are described in Appendix A.

To implement the interface with the NICE command language interpreter, the SPAR

input processor (READ) was modified to use the CLIP routine CLGET; command input

received from CLIP is p'arsed in READER according to the SPAR syntax described in

Reference 4, with minor modifications noted in Appendix D of this report. The SPAR

termination routine (FIN) was modified to use the CLIP routine CLPUT to send a message

to CLIP to terminate execution. The usage descriptions for these routines are described

in Appendix E.

5.2 Installing and Running NICE/SPAR

5.2.1 NICE/SPAR installation on VMS

NICE/SPAR is currently implemented on a VAX minicomputer running under the

VMS operating system. A delivery tape is available for installing the software on another

VMS machine; see Appendix B for complete instructions for performing the installation.

5-1

The delivery tape contains the source code for both NICE and the testbed processors.

It also contains object libraries, procedures for linking user-created processors, demonstra-

tion problem procedures, and the executable version of the testbed program.

Once the installation is complete and the symbols and logical names are properly set

up, the testbed program is ready to be executed.

5.2.2 NICE/SPAR Usage on VMS

The NICE/SPAR executive is invoked by typing NICESPAR in the interactive mode.

The command used to invoke a NICE/SPAR processor is "[X[_T processor-name"; the com-

mand to exit a processor and the NICE/SPAR executive is "[XQT EXIT". NICE directives

(prefixed by *) may be entered, intermixed with SPAR commands. Batch mode processing

is also available, with all commands and directives supplied from a disk file.

Because NICE converts all input (except labels) to uppercase characters, which SPAR

requires, raw input data may be entered in either upper or lower case.

NICE directives are documented in Reference 2. SPAR commands are documented in

Reference 4. Differences between NICE/SPAR and the documented version of SPAR are

described in Appendix D.

5.3 Running NICE/SPAR on the NAS CRAY-2

The NICE/SPAR software is operational on the NAS CRAY-2 computer under the

UNICOS operating system. To access this version of the program, the name of the direc-

tory where the executable file resides should be inserted in the user's PATH environment

variable; then to execute the program, type "nicespar."

VAX/VMS command procedures for running NICE/SPAR may be converted into

UNICOS script files by 1) deleting all DCL commands and replacing with corresponding

UNICOS commands, if necessary; 2) replacing the command line which initiates NICES-

PAR execution with one that contains "time nicespar << \eof"; and 3) adding a line at

the end which contains "\eof'. The UNICOS script file should be made executable with

the chmod command. The script may then be executed by entering its file name.

The primary difference in usage between the VAX/VMS version and the UNICOS

version of NICE/SPAR is that the case of text entered for names (procedure, file, dataset,

record, etc.) in NICE directives is retained in the UNIX version, instead of automatically

being converted to uppercase as in the VMS version. However, text interpreted by the

SPAR READER subroutine (used by the SPAR, analysis processors) is converted to up-

percase before interpreting in both versions. Another difference in usage is that file names

may be specified only with reference to the current directory (full pathnames may not be

used).

5-2

5.4 NICE/SPAR Installed Analysis Modules

The following is a list of SPAR processors and newly developed CSM processors (in-

dicated by +) which are currently installed in NICE/SPAR. The CSM processors are

described in Appendix C.

AUS

+ CSM1

DCU

DR

E

EiG

EKS

ELD

EQNF

+ ENL

GSF

INV

K

KG

+ LAU

M

MTP

PAMA

PKMA

PS

PLTA

PLTB

PRTE

PSF

+ RSEQ

SSOL

SSTA

TAB

TADS

TAFP

TAK

TGEO

TOPO

TRTA

TRTB

TRTG

+ VEC

VIEW

VPRT

- Arithmetic Utility System

- Focus Problem Mesh Generation (See Appendix C.)

- Data Complex Utility

- Linear Dynamic Response Analyzer

- E-State Initiation

- Sparse Matrix Eigensoiver

- Element Intrinsic Stiffness and Stress Matrix Generator

- Element Definition Processor

- Equivalent Nodal Force Generator

- Element Nonlinearity Processor

- Stress Data Generator

- SPAR Format Matrix Decomposition Processor

- System Stiffness Matrix Assembler

- System Initial Stress (Geometric) Stiffness Matrix Assembler

- Laminate Analysis Utility (See Appendix C.)

- System Consistent Mass Matrix Assembler

- Fluid Network Analyzer

- AMAP Dataset Printer

- KMAP Dataset Printer

- SPAR. Format Matrix Printer

- Plot Specification Generator

- Production of Graphical Displays

- EFIL Dataset printer
- Stress Table Printer

- Renumbering Strategies (See Appendix C.)

- Static Solution Generator

- Steady State Thermal Analyzer

- Basic Table Input

- Thermal Analysis Debugging Utility

- Flux and Heat, Rate Processor

- Skyline K Matrix Converter

- Thermal Element Geometry Processor

- Element Topology Analyzer

- Explicit Transient Thermal Analyzer

- Implicit Transient Thermal Analyzer

- Gear Method Transient Thermal Analyzer

- Vector Algebra Processor

- Radiation View Factor Processor

- Vector Printer

5-3

5.5 Structural Analysis Example Problems

During NICE/SPAR development, many analysis problems have been designed and

executed to verify the correctness of the system. Four of these problems are presented

here to illustrate the input syntax, analysis flow, and use of typical CLAMP directives

in describing analysis algorithms. The source for VAX/VMS DCL procedures for these

examples is provided on the installation tape; refer to the [NICESPAR.DEMO] directory.

The first problem is the static stress analysis of a section of a toroidal shell. The

input for this example is shown in figure 1. The shell wall consists of four layers of

composite material with orientations 90°/0°/-_t= d5 °. The finite element model consists

of 337 nodes and 320 combined membrane-bending elements. (The SPAR designation

for this element type is E43). This example demonstrates the relatively straightforward

usage of NICE/SPAR for a small, sequential analysis problem. Processors TAB and ELD

are used to input all geometrical and property data describing the model. The JREF

command in TAB is used to align the joint reference frames with the shell coordinate

system. Both the applied loading (defined in AUS) and the calculated displacements

(from processor SSOL) are relative to these reference frames. Later in the analysis, the

calculated displacements and reactions are converted to the global reference frame using

the LTOC, (local-to-global) command in AUS and then printed using processor VPRT.

Stress information is calculated by processor GSF and then selectively printed in three

different formats by separate executions of processor PSF.

The second example is the dynamic analysis of a planar, cantilever beam. The analysis

is carried out using both a modal method and a direct integration of the system equations

of motion using the Newmark integrator. This example shows how the SPAR processors

and the NICE CLAMP command language can work together to perform a fairly complex

analysis task.

The input for this example is shown in figure 2 and consists of five NICE CLAMP

procedures. Procedure CANT_BEAM defines the beam model and calculates system stiff-

ness and consistent mass matrices. The beam is excited by an initial displacement which

is the static deformation shape resulting from a unit applied displacement at the tip.

If a modal transient response is being performed, procedure VIBR_MODES is called,

followed by procedure TR_MODAL. A formal argument, nmodes, in VIBR MODES indi-

cates the number of vibration modes to be calculated. A similar parameter in TR.MODAL

indicates the number of modes to be used in the transient response analysis. SPAR proces-

sor DR integrates the modal equations and performs the back transformation for selected

physical coordinates.

5-4

If a transient responsecalculation by direct integration of the system equations is

being performed, procedure TR_DIRECT is called, which in turn calls procedure NEW-

MARK. Procedure NEWMARK implements the well known Newmark integration method

for second-order, coupled systems. Parameters such as system stiffness and mass matrix

names, the time step, and the total number of time steps in the analysis are formal argu-

ments to procedure NEWMARK. In NEWMARK, extensive use is made of the CLAMP

macro expression capability for calculating integration constants and controlling the algo-

rithm. The initial acceleration at time t = 0 is calculated from the given initial displace-

ment and velocity vectors. This is done by using processor AUS to set up the equations

of motion at t = 0, and INV and SSOL to solve for the acceleration. At each subsequent

time step, processor AUS is used to set up the recursion relations, and processor SSOL is

used to solve for the displacement vector at the next time step. Then velocity and acceler-

ation vectors can be calculated and selectively printed. Although procedure NEWMARK

is not intended as a "production" quality implementation of the Newmark method, it does

illustrate many of the features and the potential of NICE/SPAR procedures in facilitating

methods research and development.

The third problem is the determination of the buckling load of a blade-stiffened com-

posite panel, with a central hole and discontinuous stiffener, subjected to a uniform end

shortening (the CSM Focus Problem 1). The input for this example is shown in Figure

3. The finite element model consists of 388 nodes and 344 combined membrane-bending

(SPAR E43) elements.

This example uses four procedures and two CSM developed processors to determine

the buckling load of the panel. The procedure MESH FOCUS provides input data required

by the processor CSM1; procedure MATDAT provides the input data required by processor

LAU. The values entered in the TABi,Es formed in MESH FOCiiS define the finite, e]e_m__ent

model. By changing TABLE values, one may refine the mesh, change boundary conditions,

grade the mesh around the hole, fill in the hole, etc. The TABLES formed in MATDAT

define material and section properties.

The processor CSM1 actually generates the finite element model of the Focus Prob-

lem. Using the data supplied in MESHFOCUS, CSM1 generates nodal coordinates, el-

ement connectivities, applied displacements, and boundary conditions in the form of a

file, PANEL.PRC, written to the user's default directory. PANEL.PRC, containing the

problem data in the form of CLAMP procedures, is then incorporated into the runstream

using the CLAMP directive *ADD. The procedures included ill PANEL.PRC may then

simply be called when needed.

Procedure MAIN acts as a driver for the solution of the buckling problem. Since

this problem may be solved using either E43, E33, or experimental elements, the CLAMP

*BLOCK IF directive is used to avoid execution of SPAR processors which do not recognize

the experimental elements. The final procedure, PLOT_SPEC, sets up plot specifications

for the model. Included at the end of the figure is a Table of Contents of Library 1, listing

all existing datasets and their sizes (in number of records) at the end of execution of the

example procedure.

5-5

The fourth example problem is also a buckling problem. A square plate is subjected to

a uniform end shortening. Only one quarter of the plate has been modeled and symmetry

boundary conditions have been imposed at the x = O. and y = O. edges. This runstream

was used to evaluate the sensitivity of both SPAR and experimental elements to mesh

distortion and refinement.

The finite element model is shown in Figure 4. There are 7 joints per side for a

total of 49 joints. Either 4- or 9-node elements may be used. If 4-node elements are being

examined, then there are 36 elements total with a block of 4 elements in the center rotating

rigidly through the skew angle, O. For 9-node elements, there are 9 elements with one

central element rotating rigidly through the angle O.

The input runstream, containing four procedures, is shown in Figure 5. At the top of

the runstream, several global macros, which give the user control of the model, have been

defined. The driving procedure, SKEW_GRID, makes extensive use of CLAMP macros

for defining joint locations. The user has only to specify the skew angle and the nodal

coordinates will be calculated accordingly.

Procedure MATDAT is used to set up the tables of material and section properties

required l_y processor LAU. Procedures G41 and G91 are mesh generators for a uniform

grid for the experimental 4- and 9-node elements, respectively. The Table of Contents for

Library 1, listing all of the datasets existing at the end of execution, is given at the end of

the figure.

5-6

6. New Processor Development and Database Interface

A major goal of the NICE/SPAR system is to provide mechanisms for easy interface

of user-supplied computational processors. Existing processors can be modified or new

processors can be added to the testbed. The most critical issue faced by the developer or

modifier of a processor is maintaining compatibility with existing processors.

Compatibility with the system is insured by making the input and output data struc-

tures (datasets) compatible with those of other processors and making the capabilities of

the new or replacement processor complement those of existing processors. The internal

structure of many NICE/SPAR datasets is described in Appendix A. If the intent of _a

processor developer is to replace completely an existing processor, then typically both the

input and output data sets and capabilities would at least be equal to those of the re-

placed processor. Processors developed to merely augment existing processors do not have

so rigorous a requirement. As long as their input and output datasets agree with those of

processors with which they interact, compatibility is assured.

Sometimes this compatibility is easy to achieve and sometimes it is more difficult. Two

examples serve to illustrate these extremes. The first example is the addition of a new,

special-purpv_e processor to do interactive plotting of the geometry of a finite element

model. It would be necessary for this processor to read the datasets containing joint

locations and connectivity information for different elements. These datasets are relatively

simple to access. And since no output datasets need be produced, no compatibility problem

is introduced. A more difficult processor development task would be the replacement of

the existing system matrix factorization processor, INV. SPAR uses a storage scheme

for system matrices that involves storing oniy the non-zero blocks in the upper half of

the (assumed) symmetric matrix. Processor TOPO performs the complicated task of

determining the necessary information required for assembly and factorization of these

matrices. A capability compatible with TOPO would not be easy to produce. Finally,

the dataset output by INV has a special form and several processors in the system require

this particular form. As a result, development of a new INV with identical input and

output datasets would require careful study. The alternative of replacement of the basic

system matrix data structures would have an impact on many processors in the code.

Consequently the effect of this type of change on computational efficiency, generality, and

extendability would have to be carefully considered.

6-1

6.1 Techniques for Interfacing with the NICE/SPAR Database

The NICE/SPAR user has several options for accessing and manipulating data which

currently exists in a NICE/SPAR global database:

ao The user may extract the data in text form from the database to a disk file to

be processed as formatted data. The processors which exist for formatting some

of the more complex datasets are PRTE, PS, PAMA, and PKMA. The CLAMP

*PRINT directive also allows the user to extract the contents of named records in

fixed format fields. With either of these options the output can be redirected to a

disk file via the CLAMP ,SET directive.

b. The user may use the AUS processor to perform a variety of arithmetic and dataset

construction operations.

Cl The user may write a new program or modify an existing one to directly access

the database via the GAL-Processor interface routines. Guidelines for writing and

integrating processors are given in the next section.

6.2 Guid=l':es for New Processor Development

There are two ways to integrate new processors into the NICE/SPAR environment;

the developer can select the method which is more appropriate to his application. The

first method is to build the processor as a NICE/SPAR "external processor", which is

an independent executable program that may be invoked directly from a NICE/SPAR

input stream. The second method is to install the processor into NICE/SPAR directly

and create a single executable program that contains the NICE/SPAR processors and the

newly developed processor.

The advantages of the first method are that a) linking the processor takes a shorter

time and that b) the resulting executable file is smaller. The advantages of the second

method are that a) runtimes for installed processors are shorter than for external processors

because library files are not closed and reopened; b) NICE procedures invoking the proces-

sor may be resident in GAL libraries; and c) the developer can customize his NICE/SPAR

executive to include only the modules which his application requires. The former method

is recommended for initial checkout of a processor, while the latter is recommended for

processors which will be executed regularly.

The processor developer should follow the guidelines given below for coding and inte-

grating his new processor.

6-2

6.2.1 Guidelines for Coding New Processors

a. The name of the processor should be no longer than 4 characters;this should be

the name of the source filewith the extension ".FOR." This name must not be one

of the installedprocessor names listedin section 5.3.

b. The processor should be written in standard Fortran 77 language in the form of

a subroutine whose name isthe processor name. The subroutine should have no

arguments.

c. The processor should begin execution with a callto the librarysubroutine INTRO

with the processor name as the only argument. The given name isused by the GAL

data manager as the creating processor fornew datasets inserted in GAL libraries;

it also appears in the interactiveprompt stringifthe SPAR READER routine is

used for input command processing.See Appendix E for the usage descriptionof
INTRO.

d. The processor should perform the followingsteps before terminating or returning to

the callingprogram: (1) Call librarysubroutine NSNEXT with the only argument

being the name of the next processor to be executed. This step isnot required

ifthe SPAR READER routine isused for input command processing. (2) Close

any flies(other than GAL libraryfiles)opened during this processor'sexecution.

(3) Call librarysubroutine FIN to close GAL libraries.See Appendix E for usage

descriptionsof NSNEXT and FIN.

e. The labeledcommon block/IANDO/with 2 integervariablescontaining user input

and output unit numbers should be included in any subroutine which uses FOR-

TRAN write statements. The unit numbers are assigned in the subroutine INTRO.

All write statements should refer to the above output unit. This unit number is

assigned to correspond to the NICE PRT unit at the beginning of processor exe-
cution.

f. The NICE CLAMP utilities (Ref. 2) or the NICE/SPAR subroutine READER

(Appendix E) should be used to process command input; the READER routine

uses the NICE CLGET routine to filter NICE commands and interprets user input

according to the SPAR command format.

g. The NICE/SPAR data handling utilities DAL and RIO (Appendix E) may be used

to interact with the database. However, new processor developers may use the

NICE data manager calls (Ref. 3) directly.

h. If the processor is to be executed as an independent program or as a NICE/SPAR

"external processor", include a main program which calls the processor subroutine.

i. Logical unit numbers 1 through 40 should not be used for files other than libraries

to avoid possible conflicts with CLIP and GAL.

6-3

6.3 NICE/SPAR Processor Integration on a VAX/VMS System

Depending on the integration method chosen above (external or installed processor),

the processor code should be linked with libraries using VMS procedures provided with

the NICE/SPAR software as follows:

6-4

6.3.1 Integrating a NICE/SPAR External Processor

a. The default directory should be set to the directory where the processor source file

resides. The processor should be compiled and linked using the command

_NS$SKC :BLDEXTP processor-name

Executing this command procedure will create a compiler listing file and an exe-

cutable file in the default directory.

b. The processor can be executed in the NICE/SPAR environment as follows:

1. The default directory should be set to the one where the executable file for the
...... :-----*-I .A]kTIf_L -_ /¢DAD A.¢. l;k_._.-;n_ .-ne;._a

2. Type NICESPAR to invoke the executive program.

3. Enter optional NICE/SPAR commands.

4. Enter the NICE/SPAR command "[XQT processor-name" to start execution of

the processor.

6.3.2 Installing a New Processor into NICE/SPAR

The ea_i,_st way to install a new processor into NICE/SPAR is to use the name of a

"dummy" processor, EXP1, EXP2, EXP3, EXP4, or EXP5, as the name of the subroutine

and source file. Then compile the new processor and link it into NICE/SPAR with the

following command:

_NS$SRC :BLDNEWNS processor-name

This will create an object file, a compiler listing file, and an executable file in the

default directory. To execute this new version of ' yuu f.,!u_._:_r_/_r.-_, -........... first define the

logical name NS$EXE for your process to be the directory in which the new executable

file resides. For example: DEFINE NSSEXE DUAO: [SUE.SPAR]. Then type NICESPAR to

execute the program.

Another way to install a new processor in NICE/SPAR is to modify the main program

for NICE/SPAR to add the name of your processor to the list of known processors and add

a statement to call your subroutine; then compile the main program and your processor

and link your processor with tile new main program and the other NICE/SPAR processors.

The specific steps to be performed are:

a. COPY NS$SRC:NICESPAR.FOR []

b. Edit NICESPAR.FOR to include the name of your processor and to call it as a

subroutine.

c. Compile the main program and your processor, creating object files in the default

directory.

d. Link your new version of NICESPAR using the command:

@NS$SRC:LINKNEWNS NICESPAR processor-name

6-5

To execute this version of NICESPAR, you must first define the logical name NS$EXE

for your process to be the directory in which the new executable file resides. For example:

DEFINE NS$EXE DUaO: [SUE.SPaR]. Then type NICESPAR to execute the program. Use

the command "[xQT processor-name" to run your processor.

6.4 NICE/SPAR Processor Integration on the NAS Cray-2

Procedures and "makefiles" for integrating user-written processors into a NICE/SPAR

executable file are currently under development.

6.5 Installing User Elements

The mechanism provided in SPAR. for installing user elements is the "experimental

element" provision. The user must write subroutines to be linked with NICE/SPAR to

replace "dummy" routines in the installed version of the code. The "experimental element"

routines are DMEXPE, KEXPE, CMEXPE, and KGEXPE in processors E, EKS, M, and

KG, respectively. The minimum requirement for incorporating experimental elements is to

provide the routine KEXPE; the others may be omitted. See Appendix F for a complete

description of the use of this capability, including the calling sequences and argument

definitions nf the user-written subroutines.

The installed version of processors EKS and KG have a family of experimental ele-

ments already incorporated, the C ° (shear-deformable) shell elements. Processor EKS has

the subroutine KEXPE installed for computing experimental element stiffness and stress

recovery data, which is incorporated into the element "EFII," dataset by the driver routines

in EKS. Processor KG has the subroutine KGEXPE installed for computing experimental

element initial-stress stiffness data. These two processors could be used as models for in-

stalling a different family of elements, replacing the routines KEXPE and KGEXPE with

new user written routines.

After the subroutines are written and merged with the source code for the correspond-

ing NICE/SPAR processors into source files in the user's directory, "external proccessors"

may be created using the procedure described in Section 6.3.1. The source file names should

be different from the original file names; for example, change EKS.FOR to EKSX.FOR.

The name of the external processor to be referred to in a NICE/SPAR execution would

then be EKSX.

6-6

7. CSM Testbed Research Directions

The testbed will be used to develop and evaluate new structural analysis and com-

putational methods, carry out applications studies, and provide requirements for a new

structural analysis system that exploits advanced computers. To that end, the testbed

will be a modern, modular system that handles data efficiently, that contains a command

language which is powerful and easy to learn and use, and that has an architecture which

allows users to add and modify software with minimal difficulty. In keeping with the

CSM philosophy that analysis methods are developed in the context of problem solving,

the testbed's structural analysis capability will increase as additional applications studies

are carried out. The current testbed has been developed on a DEC VAX/VMS minicom-

puter and has been installed on a DEC MicroVAX running ULTRIX as well as a CRAY-2

running UNICOS. Future development will be directed toward UNIX systems running on

multiprocessors and vector computers, including supercomputers.

CSM contracts,grants,inhouse research,and interactionswith the aerospace industry

and other government research organizations willguide the testbed activity to meet the

above objectives.

7-1

Figure 1. NICE/SPAR Input for the Composite Toroidal Shell Example

$!

$! IIICE/SPAR DEHO_ISTRATION PROBLEM 13

$! COMPOSITE TOROIDAL SHELL

$!
$ SET VERIFY

$ SET DEF tIICESPAR$DE_O

$ nicespar

*set echo=off

*open 1, demol3.101 /new

[XQT TAB
nfTT TtT_m_

START 337

title' composite toroidal shell
JLOC: FORHATffi2

2 650.0125 O.O. 650.0125

3 650.1866 O. -.8754 650.1866

4 650.1866 O. +.8754 650.1866

5 650.6825 O. -1.6175 650.6825

6 650.6825 O. +1.6175 650.6825

7 651.4246 O. -2.1134 651.4246

8 651.4246 O. +2.1134 651.4246

9 652.3 O. -2.2875 652.3

10 652.3 O. +2.2875 652.3

11 653.1754 O. -2.1134 653.1754

12 653.1754 O. +2.1134 653.1754

13 653.9175 O. -1.6175 653.9175

14 653.9175 O. +1.6175 653.9175

15 654.4134 O. -.8754 654.4134

16 654.4134 O. +.8754 654.4134

654.5875

5 2888

5 2888

5 2888

5 2888

5 2888

5 2888

5 2888

5 2888

5 2888

5 2888

5. 2888

5. 2888

5. 2888

5. 2888

5. 2888

5. 288817 654.5875 O. O.

1 652.3 5.2888 O.

HATC: 1 .114+07 0.28

BA: DSY 1 .675-03 O. .675-03 O. .09 .270-02 :

HREF: 1 1 2 1 .99574

JREF: tJREF=-I: 1,337

CO_J=l: FIXED PLANE=2

SA(4)

FORHATffilaminate: 1 . 4 LAYER CO_IPOSITE

-9.375-03 90..00625> LAYER 1, ItlSIDE SURFACE

1.8560+05 2.0010+03 7.1470+03 O. O. 4.0620+03>

6.0400-01 6.5140-03 2.3260-02 O. O. 1.3220-02

-3.125-03 0.0 .00625> . LAYER 2

1.8560+05 2.0010+03 7.1470+03 O. O. 4.0620+03>

6.0400-01 6.5140-03 2.3260-02 O. O. 1.3220-02

3.125-03 45..00625> . LAYER 3

1.8560+05 2.0010+03 7.1470+03 O. O.

6.0400-01 6.5140-03 2.3260-02 O. O.

9.375-03 -45..00625> . LAYER 4,

1.8860+05 2.0010+03 7.1470+03 O, O.

6.0400-01 6.5140-03 2.3260-02 O. O,

O. 21 16

-.8754 21 16

+.8754 21 16

-1.6175 21 16

+1.6175 21 16

-2.1134 21 16

+2.1134 21 16

-2.2875 21 16

+2.2875 21 16

-2.1134 21 16

+2.1134 21 16

-1.6175 21 16

+1.6175 21 16

-.8754 21 16

+.8754 2i 16

O. 21 16

4.0620+03>

1.3220-02

OUTSIDE SUP.FACE

4.0620+03>

1.3220-02

Fig. 1-1

2 - 4 LAYERCOMPOSITEDIFFEItENTINPUTFORMAT
-.009375 90. .00625 185600. 2001. 7147. O. O. 4062. .604
O. O.
.0132
-.003125 0.0 .00625 185600. 2001. 7147. O. O. 4062. .604
O. O.
.0132

.003125 45. .00625 185600. 2001. 7147. O. O. 4062. .604
O. O.
.0132

.009375-45. .00625 185600. 2001. 7147. O. O. 4062. .604
O. O.
.0132
3 . 4 LAYER CONPOSITE DIFFEREtlT IIIPUT FORI,IAT AIID VALUES

-9.375-3 90. .00625 1.856+5 2.001+3 7.147+3 O. O. 4.062+3
-3.125-30. .00625 1.856+5 2.001+3 7.147+3 O. O. 4.062+3

3.125-3 45. .00625 1.856+5 2.001+3 7.147+30. O. 4.062+3
9.375-3 -45. .00625 1.856+5 2.001+3 7.147+30. O. 4.062+3

[XQT DCU .
PRIUT 1 SA .

[XQT AUS
SYSVEC: APPLIED FORCES 1

CASE 1: 1=3: J=l: 1.0
CASE 2: I=2: J=l: 322,337:0.058824

ALPHA: CASE TITLE 1
1' TRAI_SVERSE SHEAR LOAD
2' AXIAL LOAD

[XQT ELD
OIILIUE=O
E43
GROUP 1' O TO 22.5 DEG.

2 18 19 3 1 20 1
GROUP 2' 22.5 TO 180 DEG.

3 lg 21 5 1 20 7
GROUP 3' 180 TO 202.5 DEG.

17 33 32 16 1 20 1

GROUP 4' 202.5 TO 360 DEG.
16 32 30 14 1 20 7

E21:1 322 3 16 1

OI_LIUE=I

J'XqT E

T= . 1-19, -. 001,. 0001,. 0001,20.,. 0001,. 0001,. 0001
[XqT EKS
[XQT TOPO
[XQT K
[XqT II_V
OHLIHE=2

[XOT SSOL
[XQT AUS

DEFIHE D=STAT DISP

DEFIt;E R=STAT REAC
OLOB DISP=LTOG (D)
GLOB REAC=LTOG (R)

[XqT DCU
TITLE 1' 337 JOII;T COHPOSITE TOROIDAL SHELL
TOC 1

[XqT GSF
E43: 1:3

[XqT PSF
[XQT PSF

RESET DISP=2, CROS=O, rIODES-O
DIV=I. .001 .001 1.

[XQT PSF
RESET DISP=3, CROS=O, NODE8=O

.0065 .023

.0065 .023

.0065 .023

.0065 .023

Fig. 1-2

DIV=I. .001 .001 1.
[XQT _RT
JOIHTS:2,322,16: 9,329,16: 17,337,16:

TPRIUT STAT DISP
TPRIUT GLOB DISP

JOIHTSffi2,1?
TPRINT STAT REAC

[XQT DCU
TOC 1

[xqt exit

10,330,16 .

Fig. 1-3

Figure 2. Clamp Procedures for Transient Response Analysis of a Cantilever Beam

$ SET VERIFY

$ set def nsSdemo
$ del cbeam.lO1;*,cbeam.lO2;*,ns.*;*,cbeam.128;*
$ nicespar
*set echo off

*set plib = 28

*open 28 cbeam.128

*open 1 cbeam.lOl

*def/i jt = II

*procedure CAUTREAI4

[xqt tab

start <jt> 3,4,5

jloc

I 0. 0. 0. 25. 0. 0. <jr>
matc

1 10.+6 .3 .101
ba

rect 1 1.0 .1

mref
11211.0
con 1

zero 1,2,6 : 1
con 2

zero 1,2,6 : 1

nonzero 2 • <jt_
[xqt eld
e21

*def/i jtml = <<jt> - 1>

1 2 1 <jtml_..
[xqt e

[xqt eks

[xqt topo

[xqt k
[xqt m

reset g=386.

compute initial displacement due to a static end load

[xqt aus

sysvec : appl moti

i=2 : j=<jt> : -I.0

[xqt inv
reset con=2

[xqt ssol
reset con=2

[xqt dcu

change I stat disp 1 2 u0 aus 1 1
[xqt dcu
toc 1

*end

*procedure VIBR_HODES (nmodes)

• computes "nmodes" vibration modes

_def/i nmodes = [nmodes]

[xqt inv

def init = <min(<2<nmodes>> ; -_-<nmodes> + 8>)>

[xqt elg

reset init-<init>, nreq=<nmodes>, m-cem

Fig. 2-1

[xqt vprt
vectors = 1, <nmodes>

print vibr modes

[xqt dcu
toc I

*end

*procedure TRJdODAL (nmodes)

performs transient response analysis (modal superposition)

*def/i nmodes = [nmodes]

[xqt aus
define x = vibr mode 1 1 1,<nmodes>
define e = vibr eval

• compute modal initial displacements
define id = 1 uO aus 1 1

idm = prod(cem, id)
iqx = xty(x,idm)

table(nj=<nmodes>) : xtmx : j=l,<nmodes> : 1.0

table(nj=<nmodes>) : xtkx : transfer(source=e)

table(ni=l,nj=<nmodes>) : td

*def/i sbase = <(<it> - 1).3 + I>
*show/macro sbase

transfer(source=x, sbase=<sbase>, ilim=l)

[xqt dr
dtex(dt=.O01)
trl(qxlih_ oxllib=l,tl=O.O,t2=.12)
back

t = td : y = qx
z = zd aus

[xqt dcu
toc I

print 1 iqx

print 1 td

print 1 zd
*end

*procedure TR_DIRECT

performs transient response analysis by direct integration

of the equations of motion

ixqt aus

sysvec : udO . initial velocities = 0
i = 1 : j = 1 : 0.0

*open 2 cbeam.102
*call I]EWMARK (mname = cem; delt = .001; nstep = 100; pfreq = 10)
*end

*procedure NEWHARK (
kname = k ; -- . first name of global k

mname = dem; -- . first name of global m
beta = .25; --

gamma = .50; --
delt = 0.0; -- time step

nstep ; -- . number of time steps
slib = 2; -- number for temp. library

pfreq = 1 -- print frequency for results

Performs dynamic analysis on a linear system using the

Newmark-Beta implicit integration method

Fig. 2-2

Initialization

*def/a kname= [kname]
*def/a mname = [mname]
*def/e beta = [beta]

*def/e gamma = [gamma]
*def/e delt [delt]

*def/i nstep = [nstep]
*def/i slib = [slib]

*if <delt> /eq 0.0 /then

*remark error: time step (delt) = 0.0

*stop
*endif

*d_f/_ 40

*def/e al

*def/e a2

*def/e a3

*def/e a4

*def/e a5
*def/e a6

= (1. O/<heta>/<delt>/<de!t>)

= (<gamma>/<beta>/<delt >)
= (I .O/<beta>/<delt>)

= (l.O/2.0/<beta> - 1.0)

= (<gamma>/<beta> - 1.0)

= (<<gamma>/<beta> - 2.0>*<delt>/2.0)

= (<I.0- <gamma>>*<delt>)
def/e a7 = (<gamma><delt>)
*def/e ma2 = <-<a2>>

*def/e ma3 = <-<a3>>

*show macro

ixqt aus

khat = sum(_.kuame>, <aO> <rename>)
• calculate initial acceleration vector

inlib = 3 : outlib = 3

define k = I <kname>

define uO = I uO

appl forc I = prod(k, -1.O uO)
[xqt inv

reset k = <mname>, kilib=3, dzero = l.e-9

L_ mmv_

reset k=<mname>, kilib=3, qlib=3, reac=O
[xqt inv
reset k=khat

[xqt dcu

copy I, <slib> uO

copy 1, <slib> udO
copy 3, <slib> stat disp

change <slib> uO mask mask mask star disp 0 1
change <slib> udO mask mask mask ud vec 0 1
change <slib> stat mask 1 1 udd vec 0 1
toc I

toc <slib>

*close 3 /delete

[xqt vprt
lib = <slib>

format = 4

print stat disp 0 ' initial displacement vector

print ud vec 0 ' initial velocity vector
print udd vec 0 ' initial acceleration vector

iterate for "nstep" time steps

ixqt aus

*def/i pcnt- 1
*do Setep = O,<nstep>

inlib = 21 : outlib = 21

Fig.2-3

define u = <slib> star disp <$step>

define ud = <slib> ud vec <$step>

define udd = <slib> udd vec <$step>

define m = 1 <mname>

rl = sum(<aO> u <a2> ud)
r2 = sum(<a3> udd rl)

*def/i stpl = <<$step> + 1>
outlib = <slib>

applied force <stpl> = prod(m, r2)
[xqt ssol

reset k=khat, set=<stpl>, qlib=<slib>, reac=O
[xqt aus

inlib = 21 : outlib = 21

define utdt = <slib> stat disp <stpl>
define ut = <slib> stat disp <$step>

define udt = <slib> ud vec <$step>
define uddt = <slib> udd vec <$step>
ul = sum(utdt -1.0 ut)
u2 = sum(<aO> ul <ma2> udt)
u3 = sum(udt <a6> uddt)
outlib = <slib>

udd vec <stpl> = sum(u2, <ma3> uddt)
define utt = <slib> udd vec <stpl>

ud vec <stpl> = sire(u3 <aT> utt)
*short/macro pcnt

*if <_pcnt> /eq [pfreq]> /then
I00 print every pfreq'th solution

ixqt vprt
lib = <slib>

format = 4

print stat disp <stpl> ' displacement vector
*def/i pcnt= 1
[xqt aus
*else

*def/i pcnt= <<pcnt>+ I>
*endif

*enddo

*end

*call CAIIT_BEA_

#call VIBR HODES (nmodes=4)

#call TR_HODAL (nmodes=4)

*call TR DIRECT

[xqt exit

Fig. 2-4

Figure3. CSMFocusProblem1

$ DELMESH_FOCUS.DAT;*,MATDAT.DAT;*,PLOT_SPEC.DAT;*,MAIN.DAT;*,P_;EL*

.DAT;*
$ DEL *.L16;*

$ DEL FOCUS.L01;*
$ NICESPAR

*open 1 focus.101
*set echo=off

CSM FOCUS PROBLEM 1 --- BUCKLING OF A
BLADE-STIFFENED PANEL WITH A DISCONTINUOUS STIFFENER

Global Macro Definition:

*DEF DOSPAR == <TRUE> FALSE forexpt, elements, TRUE for SPAR e33, e43

PROCEDURE MESH_OCUS: Set up the TABLEs to be used by CSM1

*procedure mesh_focus
[xqt aus

. build table of integer user data

TABLE(NI=33,HJ=I,itype=O): CSMP FOCS 1 1

J=1:4 0 4 16 > . nnpe, iopt, nrings, nspokes

Boundary conditions:
VUW IUVW

110 000>
III 111>

010 000>

III III>

II0 000>

!00 000>

000 000>

010 000>

100 000>
000 000>

Edge x=O.O (Edge I)

Edge y=2*(be + be) (Edge 2)
Edge x=AI (Edge 3)
Edge y=O.O (Edge 4)
Corner at (0.,O .)
Corner at (O.,2*(be + bs))
Corner at (A1,2*(be + bs))
Corner at (AI,O.)
Stiffeners at x=O.O
Stiffeners at x=A1

iwall jwall iref jref nelx nele nelbs nels ifill

1 2 0 0 6 2 2 2 0

• build table of floating point user data

TABLE(NI=IO,NJ=I): CSMP FOCS 1 2

a dhole xc yc zc rat al be bs hs

J=l: 4.0 2.0 2.0 0.0 0.0 0.25 30.0 1.25 4.5 1.4

*END

PROCEDURE MATDAT -- SET UP TABLES OF MATERIAL PROPERTIES

*procedure matdat
[XQT AUS

*def g = 3.84615e+6

Fig. 3-1

• Ell NUI2 E22 G12 GI3 G23 ALPHA1 ALPHA2 WTDEH

TABLE(UI=g,NJ=2) : 0_B DATA 1 1

I=1,2,3,4,5,6,7,8,9

J=l: 10.OE+6 .30 10.OE+6 <g> <g> <g> 0.O O.O .1
J=2:19.e+6 .38 1.89e+6 .93E+6 .93E+6 .93e+6 1.e-4 1.e-4 .O1

FOCUS PROBLEH DATA:

SKIU OF FOCUS PROBLEM

TABLE(UI=3,IIJ=25.itype=O) : LAI,{ OHB 1 1

I=1,2,3
Jffil: 1 .OO55
Jr2: 1 .OO55
J=3: 1 .OO55
J=4: 1 .OO55
J=5: 1 .0055

J=6: 1 . 0055
J=7: 1 .0055
Jffi8: 1 .0055
Jffi9: 1 .0055
JffilO: 1 .0055
Jffi11:1 .0055
Jffi12:1 .0055
J=13:1 .0055

J=14: I o055
J=15:1 .0055
J=16:1 0055

J=17:1 0055
J=18: I 0055
J=19:1 0055
J=20:1 0055
J=21:1 0055
J=22:1 0055
J=23:1 0055
Jffi24: 1 0055
J=25: 1 0055

45.

-45.

O.

O.

-45.

45.

O.
O.

O.
45.

-45.

O.

O.

O.

-45.

45.

O.

O.

O.

45

-45

0
0

-45

45

BLADE STIFFEIIERS OF FOCUS PROBLEH

TABLE(IIIffi3,HJ=24,itype=O) : LAM O_IB 2 1

I=1,2,3
J=l: 1 .OO55 45.0
J=2: 1 .OO55 -45.0

J=3: 1 .O055 0.0
J=4: 1 .0055 0.0
J=5: 1 .0055 0.0
J=6: 1 .0055 0.0
J=7: 1 .0055 0.O
J=8: 1 .0055 0.0
J=9: 1 .0055 O.O
J=lO: 1 .0055 0.O
J=ll: 1 .0055 0.0
J=12:1 .0055 0.0
J=13:1 .0055 0.0

J=14:1 .0055 0.O
J=15:1 .0055 0.O
J=16:1 .0055 0.O
J=17:1 .0055 0.0

Fig. 3-2

J=18:
J=Ig:
J=20:
J=21:
J=22:
J=23:
J=24:

1 0055 0.0
1 0055 O.0
1 0055 O.0
1 0055 O.O
1 0055 0.O
1 0055 -45.0
1 0055 45.0

TABLE (IJI=3,_IJ=l,itype=O): LA_ OMB 3 I
J=1 : 2 .1 0.00

*end

PROCEDURE PLOT SPEC -- Set up plotting specifications

*procedure
[XQT PLTA

SPEC

plotspec

*end

1
STITLE' GROUP 1 AROUIJD HOLE
VIEW=3
E43 1

SPEC 2
STITLE' GROUP 3 PLATE SKill
VIEW=3

E43 3
SPEC 3

STITLE' GROUP 2 STIFFEtJERS OVER HOLE HODEL

VIEW=-2

E43 2

SPEC 4

STITLE' GROUP 4 LEFT OUTER STIFFEIIER

VIEW=-2
E43 4

SPEC 5
STITLE' GROUP 5 CEIITER TOP OF HOLE STIFFEIIER

VIE_=-2
E43 5

SPEC 6
STITLE' GROUP 6 BOTTOM TOP OF HOLE STIFFEIIER
VIE_=-2
E43 6

SPEC 7
STITLE' GROUP 7 RIGHT OUTER STIFFEI]ER
VIEW=-2

E43 7

SPEC 8

ROTATE -15 3 -45 2 -60 !

VIEW=3

ALL

I,[AII!PROGRAH

*procedure main

[xqt tab
start I000

title' BLADE STIFFEUED COHPOSITE PAUEL WITH HOLE

*CALL mesh focus

[xqt csml
[xqt tab

*ADD PA_IEL.PRC

*CALL panel_start
JLOC

*CALL panel_jloc

Dummy START card

Fig. :}-3

MATC
11.00.3
COII 1

*CALL panel_bc
*CALL matdat

[xqt lau

reset keyl=-I
[xqt eld

*CALL panel conn
[xqt rseq

reset maxcon=30

[xqt aus
sysvec : appl moti

*CALL panel_ad
[xqt e
[xqt eks

[xqt topo
reset maxsub=8190

[xqt k

[xqt inv

[xqt ssol
[xqt vprt

format=4

print stat disp
[xqc gsf
reset embed=l

*if <dospar> /then

[xqt psf

reset dispiay-_2
*endif

[xqt kg

[xqt eig

reset init=5, prob=buck, nreq=2
[xqt vprt
format=4

vector=l,2

print buck mode

*CALL plot_spec
*end

PSF only for SPAR elements

*call main

[xqt exit

TABLE OF CONTEI]TS, LIBRARY 1

BLADE STIFFEIIED C014POSITE PAUEL WITH HOLE

+++++++++++++++++÷++

+ Library 1 File: FOCUS.LO1 +

+ Form: GAL82 File size: 731035 words Uo. of Datasets: 41 +
++

Seq# Date Time Lk Records
I* 05:07:86 16:15:58 0 1 TAB

2* 05:07:86 16:15:59 0 1 TAB
3* 05:07:86 16:15:59 0 1 TAB
4 05:07:86 16:16:00 0 1 TAB
5 05:07:86 16:16:13 0 1 AUS
6 05:07:86 16:16:13 0 1 AUS
7 05:07:86 16:16:58 0 1 TAB
8 05:07:86 16:16:59 0 1 TAB
9 05:07:86 16:16:59 0 1 TAB

10 05:07:86 16:17:16 0 1 TAB

Processor Dataset name

JDFI.BTAB.I.8

JREF.BTAB.2.6

ALTR.BTAB.2.4

IIDAL

CS_fP.FOCS 1.1

CSMP.FOCS 1.2
JDF1.BTAB 1.8
JREF.BTAB 2.6

ALTR.BTAB 2.4
JLOC.BTAB 2.5

Fig. 3-4

11 05:07:86 16:17:17 0
12 05:07:86 16:17:21 0
13 05:07:86 16:17:21 0
14 05:07:86 16:17:34 0
15 05:07:86 16:17:35 0
16 05:07:86 16:17:36 0
17 05:07:86 16:17:37 0
18 05:07:86 16:17:59 0
19 05:07:86 16:17:59 0
20 05:07:86 16:18:16 0
21 05:07:86 16:18:31 0
22 05:07:86 16:18:31 0
23 05:07:86 16:18:32 0
24 05:07:86 16:18:32 0
25 05:07:86 16:18:32 0

27 05:07:86 16:18:33 0
28 05:07:86 16:18:48 0
29 05:07:86 16:19:08 0
30 05:07:86 16:19:23 0
31 05:07:86 16:19:31 0
32 05:07:86 16:20:59 0
33 05:07:86 16:21:03 0
34 05:07:86 16:21:25 0
35 05:07:86 16:22:20 0
36 05:07:86 16:26:13 0
37 05:07:86 16:26:28 0
38 05:07:86 1,6:27:12 0
39 05:07:8b 16:28:21 0
40 05:07:86 16:29:31 0
41 05:07:86 16:29:31 0

1 TAB

1 TAB

1 TAB

1 AUS

1 AUS

1 AUS

1 AUS

1 LAU

1 LAU
7 ELD

1 ELD
1 ELD

1 ELD

1 ELD
1 ELD

_,L.U

1 ELD

1 RSEQ
1 AUS

344 E

1 E

12 TOP{]

11 TOPO
32 K

59 IIIV

1 8SOL
1 8SOL

344 GSF

32 Kfi

1 EIfi

5 EIO

MATC.BTAB.2.2

CO_I..1

QJJT.BTAB.2.19
OHB.DATA.I.1

LAI_.O_B. 1.1

LAI_I.OMB. 2.1

LAI,I.OHB. 3.1

SA.BTAB.2.13

PROP.BTAB.2.101

DEF.E43.11.4

GD.E43.11.4
GTIT.E43.11.4

DIR.E43.11.4

ELTS. I;AME

ELTS. fII_OD

H8

JSEQ.BTAB.2.17
APPL.HOTI.I.1

E43.EFIL.11.4
DEM.DIAG
KHAP..1808.276
AI-IAP..6115.1732
K.SPAR.36
IIIV.K.I

STAT,DIBP.I.1

STAT.REAC.I,1
STRS.E43.1.1
KG.SPAR.36
BUCK.EVAL.I.1
BUCE.I,IODE.I.I

Fig. 3-5

Figure4. FiniteElementModelfor SkewedPlateExampleProblem

| ! J / I I

\

Fig. 4-1

Figure 5. Skewed Plate Example Problem

$ delete skew grid.lO1;*

$ delete skew grid.dat;*,matdat.dat;*,g91.dat;*
$ IJICESPAR

*set echo=off

BUCKLIIIG OF A SIMPLY SUPPORTED SQUARE PLATE

WITH ELEMEIITB SKEWED THROUOH All AIIOLE, THETA

Define Global problem macros: (These macros are defined here for

all procedures.)

*DEF IOPT == 7

*DEF lIEU == 9

*DEF IIEL == 3

*DEF iiQUAD == 3
*DEF AIIGLE ==20.0

*DEF DL == 2.5
*DEF DOE43 == <FALSE>
*DEF ISECT == 1

ELEMEllT OPTIOII (IF DOE43 FALSE)

I]UMBER OF ITODES PER ELEI,fEIIT

I]UHBER OF (9 I]ODED) ELEMEIITS Ill EACH DIRECTIOI]

I_UL_IDE._ ur Ill IE._l_.hl I IUH FUJLAt l O JLI4 r-I%_ll U.ILIt%ID_, | JLUll

SKE!! AIIGLE in degrees
LEIiGTH OF QUARTER I.IODEL Ill EACH DIRECTIOI/

IF FALSE, EXPT. ELENEIITS; IF TRUE, E43 ELEHEIITS

SECTIOll PROPERTIES; VALUES MAY BE 1-3 AS FOLLOW.IS:

1 : ISOTROPIC (ALUI,fIUUI,_)

2 : SKIll OF FOCUS PROBLEN, T=0.00555

3 : BLADE STIFFEI]ERS OF FOCUS PROB, T=0.00555

OPEII REQUIRED FILES

*open I, skew_grid.lOl

PROCEDURE skew_grid; PERFORMS THE AI{ALYSIS

*procedure skewgrid

iXQT TAB

Some useful definitions:

• ,'_=xlx _._ - < _nei_ .7- + i 2_

• deg/t nnod = < <nn:>*<nn> _>

• def/£ nnmnx = (_.nnod> - _nn> + 1)

TOTAL UUHBER OF IIODES

I]ODE LOCATED AT (O.O,dl)

START <nnod> 6

If only one nine-noded element is used, define joint locations

independent of theta (only used when checking accuracy vs number

of nodes per side):

*if < <nel> /eq 1 > /then

JOIUT LOCATI011S

1 0.0 0.0 0.0 - d]:.-. 0.0 0,0 <nn-- 1 <nn'>

<nn> 0.0 <dl> 0.0 <dl: dl.. 0.0

*else

Set up macros needed for defining joint locations as functions

of the skew angle, theta.
Some convenient node numbers:

*def/i ncen = <(<nnod>+l)_2>

*def/i nt ffi < <ncen> + <nn> .'>

*def/i nb = < <ncen> - <nn> >
*def/i nmidn = < (<nn>+i)_2 >

Center node number

llode directly above ncen

llode directly below ncen

Mid side node on y=O side

Fig. 5-l

*def/i ntls = < <ncen> + (<nn>)_2 + I >
*def/i nintn= < (<nn>-l)_2 >

*def/i nmpl = < (<nn>+l)_2 + 1 >

Theta related terms:

def/g theta = < <angle><D2R> >

*def/g st = <sin(<theta>)>

*def/g ct = <cos(<theta>)>

*def/g beta = < <pi>/4.-<theta> >
*def/g sb = <sin(<beta>)>

*def/g cb = <cos(<beta>)>

Convenient geometric values:

:def/g dh = < <dl>/<nel>/2. >

*def/g h = < <dl>/2. >

*def/g a = < 2.^0.5 >

Convenient sums and products:

:def/g dhst = < <dh>*<st> >

def/g dhct = < <dh><ct> >

def/g dhsb = < <dh><sb> >
def/g dhcb = < <dh><cb> >

*def/g hpdh = < <h> + <dh> >

*def/g hmdL " <h> - <dh> >

def/g hpct = < <h> + <dh><ct> >

def/g hmct = < <h> - <dh><ct> >

def/g hpst = < <h> + <dh><st> >

def/g hmst = < <h> - <dh><st> >

def/g hpcb = < <h> + <dh><a>*<cb> >

def/g hmcb = < <h> - <dh><a>*<cb> >

def/g hpsb = < <h> + <dh><a>*<sb> >

def/g hmsb = < <h> - <dh><a>*<sb> >

JOI}JT LOCATIO_!S

Node above m.s. node on x=O aide

Nr. of nodes between rigid
• center and edge

Midside node plus one

Skew angle
Sine of skew angle
Cosine of skew angle
Convenient angle definition

. Distance between nodes

Distance to center of I/4
• model

Center node:

<ncen'> <h> <h> 0.0

Nodes between y=O and rigid center:

< <nmidn>- I> <hmdh> 0.0 0.0

<nn> <hmsb> <hmcb> 0.0
<hpdh> O. 0 O. 0 3 I

<hpcb> <hmsb> O.0

<nintn>

Hodes between x=O and rigid center:

<-__nb>-<nel>> 0.0 <hmdh> 0.0 0.0 <hpdh> 0.0 3
I <hmsb> <hmcb> 0.0 <hmcb> <hpsb> 0.0

r]odes between rigid center and y=dly:

<<nt> - I> <hmcb> <hpsb> 0.0 <hpsb> <hpcb> 0.0 3

<v_n> <hmdh> <dl> 0.0 <hpdh> <dl> 0.0

Nodes between rigid center and x=dlx:

<<nb> + I> <hpcb> <hmsb> 0.0 <hpsb> <hpcb> 0.0 3

1 <dl> <hmdh> 0.0 <dl> <hpdh> 0.0

<nn> <nintn>

I <nintn>

<nn> <nintn>

Fig. 5-2

Nodes on lower left hand corner:

1 0.0 0.0 0.0 0.0 <hmdh> 0.0 <nintn> <nn> <nintn>

1 <hmdh> 0.0 0.0 <hmsb> <hmcb> 0.0

Nodes on upper left hand corner:

<ntls> 0.0 <hpdh> 0.0 0.0 <dl> 0.0 <nintn> <nn> <nintn>
1 <hmcb> <hpsb> 0.0 <hmdh> <dl> 0.0

Nodes on upper right hand corner:

<<nt>+l> <hpsb> <hpcb> 0.0 <hpdh> <dl> 0.0
1 <dl> <hpdh> 0.0 <dl> <dl> 0.0

Uodes on lower right hand corner:

<nintn> <nn> <nintn>

<nmpl > <hpdh> O. 0
1 <dl> 0.0

0.0 <hpcb> <hmsb> 0.0 <nintn> <nn> <nintn>
0.0 <dl> <hmdh> 0.0

*endif

MATERIAL CO!ISTANTS
1 1.0 .3

Define constraints.

COUSTRAIIIT DEFINITION 1

symm plane=l

syl,.,rlane=2
zero 3:1

nonzero I : <nn>,<nnod>,<nn>
COUSTRAIHT DEFINITIOI_ 2

symm plane = 1
symm plane = 2
zero 1,3,5 : <nnmnx>,<nnod>

zero 2,3,4 : <nn>,<nnod>,<nn>

Pre-stress; rly=O., Hx=constant

Plane 2,3 plane of symmetry

Plane 1,3 plane of symmetry
Constrain center w

Apply displacement at x=ix edge

Buckling

Plane 2,3 plane of symmetry

Plane 1,3 plane of symmetry

Edge y=ly simply supported

Edge x=ix simply supported

Set up maLerial properties ,,sing LAU _,d data supplied by

procedure MATDAT

*ca!l matdat

[XQT LAU

reset key1=-!

Define element connectivity:

iXQT ELD

*if < <doe43> /eq <false> > /then

If experimental elements are to be used, DOE43 is false; set

up the necessary values for these elements

*def major =<nen> IIumber of nodes per element

*def minor = <iopt> Element option

def nst = <<nquad><nquad>*8> llumber of stress resultants

per element

expe EX<NAJOR><MII]DR> <MAJOR> <MIIIOR> <UE[I> 6 <lIST> 1 101 2
nsect = 1
sref = I

*if <<nen> /eq 4 > /then . Use 4-noded element mesh generator

*call g4! (nx=<nn>; ny=<nn>; maj=<major>; min=_minor>)
*else

*if <<nen> /eq 9 > /then . Use 9-noded element mesh generator

Fig. 5-3

*call g91 (nx=<nel>; ny=<nel>; maj=<major>; min=<minor>)
*endif

*endif

*else

If DOE43 is true then use E43 SPAR elements.

E43

nsect = 1
sref = 1

*def j3 = (<nn>+2)

*def j4 = (<nn>+l)
def he43 = (2<nel>)

1 2 <j3> <j4> 1 <ne43> <ne43>
*endif

[XQT Z

[XqZ ZZS
[XQT TOPO
[XqT K

iXQT

Apply uniform end shortening:

AUS

sysvec : appl mcti

±=I: j=<nn>,<nnod>,<nn>: -0.10

Factor'

iXQT ItlV

reset spdp=2
online=2

Solve:

iXQT SSOL

Print static displacements and stresses:

iXOT _'_RT

for_,aZ=4

print star disp
[X,_T _SF

reset embed=l

on!ine=2

•if <doe43> /then

[XQ_ PSF

reset display=2
*endif

iXQT KG

online = 1

[XqZ IHV
reset con=2

PSF only used for standard SPAR elements

iXQT

Compute lowest 2 eigenvalues:

EIG

reset init=5, nreq=2, prob=stab, con=2

iXQT

Print eigenvalues and eigenvectors:

VPRT
format=4

Fig.5-4

*end

vector=l,2

print buck mode

PROCEDURE MATDAT -- SET UP TABLES OF MATERIAL PROPERTIES

*procedure matdat
[XqT AUS

TABLE(NI=9,I]J=3): 0MB DATA 1 1

*def g = 3.84615e+6
Ell NU12 E22 G12 G13 G23 ALPHA1 ALPHA2 WTDEN

I=1,2,3,4,5,6,7,8,9
2=1:20_0E+6 _5 0.060E+6 .30E+6 .25E+6 .25E+6 1.E-4 1.E-4 •01

J=2:10.0E+6 .30 10.0E+6 <g> <8> <g> 0.0 0.0 .1
J=3:19.e+6 •38 1.89e+6 .93E+6 .93E+6 .93e+6 1.e-4 1.e-4 .01

• BUILD LAMINATE DATA TABLES

MATERIAL TYPE, LAYER THICKNESS, ANGLE IIl DEGREES

*if < <isect> /eq 1 > /then

ISOTROPIC TEST DATA:

TABLE (HI=3,11J=l,itype=O) : LAM OMB 1 1
J=l : 2 .I 0.00

*endif

*if < _isect> /eq 2 > /then

• SKill OF FOCUS PROBLEM

TABLE(I]I=3,NJ=25,itype=O) : LAM ONB 1 1

I=l ,2,3
J=! : 3 .0055
3=2,-: 3 ,')055

J=3:
J=4:

J=6:
J=7:

J=8:
J=9: 3
J=lO: 3
J=ll: 3
J=12:3
J=13:3
J=14:3

J=15:3

J=16:3

3 .0055
3 .O055

3 .0055

3 .0055
3 0055
3 0055

0055
0055
0055
0055
0055
0055
0055
0055

J=17:3 .0055
J=18:3 .0055

J=19:3 •0055
J=20:3 .0055
J=21:3 .0055

J=22:3 .0055
J=23:3 .0055
J=24:3 .0055

J=25:3 .0055
*endif

45.
Mr

O.
O.

-45.
45.

O.
O.
O.

45.
-45.

O.

O.
O.

-45.
45.

O.
0
0

45
-45

0
0

-45
45

*if < <isect> /eq 3 > /then

Fig. 5-5

• BLADE STIFFNERS OF FOCUS PROBLEM

TABLE(NI=3,1JJ=24,itype=O) : LAM 0MB 1 1

I=1,2,3

J=l: 3 .O055
J=2: 3 .O055
J=3: 3 .OO55
J=4: 3 .O055

J=5: 3 .0055
J=6: 3 .0055
J=7: 3 .0055
J=8: 3 .0055

J=9: 3 .0055
J=lO: 3 .0055
J=ll: 3 .0055
J=12:3 .0055
J=13:3 .0055
J=14:3 .0055

J=15:3 .0055
J=16:3 .0055
J=17:3 .0055
J=18:3 0055
J=19:3 O055
J=20:3 0055

J=21:3 0055
J:22: 3 0055
J=23:3 0055

]=24: _ C055

*endif

*end

45 .O
-45.0

O.O
0.O
O.0
0.0
O.0
0.O
0.0
0.O
0.0
0.0
O.0
O.0
O.0
0.0
0.0
O.O
O0

O0
O0
O0

-45 0
45 0

PROCEDURE G41 -- MESH GENERATOR FOR FOUR-NODED ELEMENTS

*procedure g41 (nx; ny; maj; min)

*def/i nx = [nx]

*def/i ny = [ny]

*def/i maj = [mail

*def/i min = [min]

*do $] = l,<<ny>-1>
*do $i = l,<<nx>-1>

def n! = < <ux><<$j>-l> + <$i> >
*def n2 = < <n1> + I >

*def n3 = < <n2> + <nx> >

*def n4 = < <nl> + <nx> >
<nl> <n2> <n3> <n4>

*enddo

*enddo

*end

PROCEDURE G91 -- MESH GENERATOR FOR UII]E-NODED ELEMENTS

*procedure g91 (nx; ny; maj; min)

*def/i nx = [nx]

*def/i ny = [ny]

*def/i maj = [maj]
*def/i min = [min]

*def/i nl = I

*def/i jl = 1
*def/i iinc= I

def jinc = (2<nx> + 1)

*show macro

Fig. 5-6

Ado $j = 1,<ny>
*do $i = l,<nx>

*def n5 = (<nl> + <iinc>)
*def n2 = (<n5> + <iinc>)

*def n8 = (<nl> + <jinc>)

*def n9 = (<n5> + <jinc>)

*def n6 = (<n2> + <jinc>)

*def n4 = (<n8> + <jinc>)

*def n7 = (<n9> + <jinc>)
*def n3 = (<n6> + <jinc>)

*remark ex<maj><min> <nl> <n2> <n3> <n4> <n5> <n6> <nT> <nS> <ng>
<nl> <n2> <n3> <n4> <n5> <n6> <n7> <n8> _ng>

def nl = (<nl> + 2<iinc>)
*end

def nl = (<jl> + (2<$j>*<jinc>))

*end

All procedures have been defined; Call the main procedure and exit.

*call skew_grid

[xqt exit

TABLE OF COIITEI_TS, LIBRARY I

+++÷++_ _++++++++++_+++++++ _+++

+ Library 1 File: SKEW_GRID.LOl +
+ Form: GA[q2 File size: 170163 words _o. of Datasets: 34 +
++++++++tiT,- '+'!-++++++t+++

Seq# Date Ti.,e Lk Records Processor Dataset name
1 05:07:86 15:54:21 0 1 TAB JDF1.BTAB.1.8
2 05:07:86 15:54:21 0 1 TAB JREF.BTAB.2.6
3 05"07:86 15:54:21 0 1 TAB ALTR.BTAB.2.4

4 05:07:86 15:54:24 0 1 TAB TEXT.BTAB.2.1
5 05:07:86 15:54:27 0 1 TAB JLOC.BTAB.2.5
6 05:07:86 15:54:27 0 I TAB HATC.BTAB.2.2

'; °_ 15 _-_._o :o_, : O 1 TAB en_ .!

_q: ,,'_5"nv, :P.6 _5:54:29 O I TAB C0U..2
9 05:07:86 !5:54:30 0 1 TAB QJJT.BTAB.2.19

10 05_07:86 15:54:35 0 1 AUS OHB.DATA.I.1

11 05:07:86 15:54:36 0 1 AUS LAH.OHB.I.1

12 05:07:86 15:54:41 0 1 LAU SA.BTAB.2.13
13 05:07:86 15.54:41 0 1 LAU PROP.BTAB.2.101
14 05:07:86 15:54:49 0 1 ELD DEF.EX91..9

15 05:0'[:86 15:54:55 0 1 ELD GD.EX91..9
16 05:07:86 15:54:55 0 1 ELD GTIT.EX91..9
17 05:07:86 15:54:56 0 1 ELI) DIR.EX91..9
18 05:07:86 15:54:56 0 1 ELD ELTS.I]AME
i9 05:07:86 15:54:57 0 1 ELD ELTS.NI'_OD
20 05:07:86 15:54:57 0 1 ELD ELTS.ISCT
21 05:07:86 15:54:57 0 I ELD rJS

22 05:07:86 15:55:02 0 9 E EX91.EFIL..9

23 05:07:86 15:55:13 0 1 E DEH.DIAG

24 05:07:86 15:56:11 0 2 TOPO KMAP..337.85
25 05:07:86 15:56:12 0 3 TOP0 AHAP..553.153
26 05:07:86 15:56:16 0 5 K K.SPAR.25

27 05:07:86 15:56:33 0 1 AUS APPL.HOTI.I.1

28 05:07:86 15:56:40 0 8 IUV INV.K.1

29 05:07:86 15:57:03 0 1 SSOL STAT.DISP.I.t
30 05:07:86 15:57:09 0 1 SSOL STAT.REAC.I.1
31 05:07:86 15:57:41 0 5 KG KG.SPAR.25

32 05:07:86 15:58:09 0 4 IllV ItN.K.2
33 05:07:86 15:58:36 0 1 EIG BUCK.EVAL.1.2
34 05:07:86 15:58:36 0 5 EIG BUCK.}_ODE.1.2

Fig. 5-7

APPENDIX A. Description of NICE/SPAR Datasets

The contents of this appendix are extracted from Reference 8 with additions and

corrections added to reflect testt)ed usag,,, l)cscril)tions of many of the data sets that are

created and used I)y NICI,]/SI'AR processors are given, ordered alphabetically by data

set name. Each nominal data set natne involves fc)ur components referred to as NAMEI,

NAME2, NAME3, and NAME,I. NAME1 and NAME2 are alphanumeric names with a

maximum of four ('haractcrs each. NAME3 and NAME4 are integers.

The contents <)f most of the data sets may I)4, viewed logically as two-dimensional

tables, where NI is the lirst dimension, or ('olumn-siz(,, and N.I is the s4'<:ond dimension,

or row-size. The (tal.a is written t<) the NI(;E/SI'AR gl4)l)al 41atal)as4, as named rec<)r(ls in

nominal data sets, with a re4"<)rd length of Nl+N.I data items. Where the (iataset is I)locke(l,

each [)lock is written as one nominal record. The N.I l)aramet4'r (row-size) is stored in the

N ICE/SI'AI{ record as the matrix (timetlsion I)aram4'ter. The rec4)r(I name use(i l)y the

currently instalh,41 NICE/SI'AI¢ pr<)4"(,ssors is "I)A'I'A".

M4)st data sets contain data <)f <rely a single tyl)e: integer, single precisionreal, doul)le

precision real, or alphanumeric. These are indi4"ated t)y type co4h,s O, -! or I, -2 or 2, and

,1, rcspe<t.lvely. Alphanumeric data is l)a(:ked four chara4"t(,rs 1,4)a machine word.

A-1

ALTR BTAB 2 4

Created from ALTREF in processor TAB

NJ -- Number of alternate reference frames
NI=: 12

Type - real

Contents of each entry:

1. all

2. a_l

3. a31

4. a12

5. a22

6. a32

7. al3

8. a23

9. a33

10. Xo }
11. Yo

12. Zo

Components of a

coordinate transformation matrix

Location of origin of

alternate reference frame

given in global coordinates

Formula:

xo} ra,,
Z_ La3,

coordinates in

alternate reference frame

a12

a22

a32
al31 /xo}a23 Yg + Yo
ct33 Zg Zo

coordinates in

global reference frame

A-2

AMAP 0 ic2 isize

ic2 = Parameter reflecting the cost of equation solution given a factored system matrix.

Computed in processor TOPO.

isize -- The maximum number of submatrices involved during the factorization process.

Created in processor TOPO and used by INV to guide factorization of system matrices.
NJ = total number of joints in the model

Type = integer

The purpose of AMAP is to furnish compact information describing the location

of each submatrix in the "active" upper triangle of the system matrix as each joint is

eliminated. During factorization the active upper triangle is held in the work array

S(JDF, JDF, isize). The pointers in AMAP point to JDF by JDF submatrices in this

array. The data set consists of one or more records with the default record size of 1792

words. A joint group is included for each joint in the model. Each record contains the

following:

JOINTS - The number of joint groups contained in this record.

allowed to span a record boundary.

Repeated JOINTS times:

A joint group is not

JNT - The number of the current joint.

CONRNG - The number of submatrices including the diagonal in the upper

triangle for the current joint as it is being eliminated.

CONECT(CONRNG-1) - A list of column positions for each of the subma-
trices in the JNT row.

SUBMAP (CONRNG • (CONRNG + 1)/2) - Contains a pointer into the

work array, S, for each submatrix in the active upper triangle.

A-3

AI't'I, FOI_(: isn't, 1

(:z'_'_zl_'d in proc_,nsor A[IS.

N,I t.ol._d number of joints in t,h,' model

Type' rt,id nilIKh' pr_'_'inion

SYSVI,](; I'_rm_zl. d_ll._! ,set.. A SYSVI,](', d_l.la _,1. h_l,_ N.i egual I,o I,he number of.joint,n

in the model _lnd N I egu_zl l.o I,h(, Illlrnber ol" _lcl.iv(, (unconst, r_l.ined) deKreen o!" freedom

Per joinL. When t,he_, d_zt_z _(,t._ _tr_' m_l.nipuhzl.ed I_y _ procennor, they are expand('d 1,o G

deKree_ oI"f'reedon_per joint,l_y_uhrout.ineI_[]I_.SYSVE(_ formal,data._el.,_freg_H,nt.lyh_.v(,

mull,iph,block_. The m,_'_uzin_of t.h_'blo_-knumber v_.riendependin_ on the l);_rt,icula.rda.t,_z.

set..In st.iz.t,ic analysisthe block hi,tuber indic_t.esthe load _'_tse.In cigcnv_due l_roblems

the block number indica.t,e._ the eigenv_,_'t.or.

A-4

APPL MOTI iset 1

iset = Load set

Created in processor AUS.

SYSVEC format. See "APPL FORC iset".

Contents:

Each entry contains applied motions on that joint in each active direction.

Created from E21 section properties in processor TAB
NJ = Number of entries

NI = 31

Type = real

Contents of each entry:

(See reference 5 for description of DSY input of E21 section properties.)

1. Element type indicator 17. Number of points at which stresses

2. Not used are to be calculated

3. Not used 18. yll

4. I1 19. YI2

5. _I 20. y2|

6. I2 21. Y22

7. a2 22. Y31

8. a 23. Ya2

9. f 24. Y41

10. fl 25. Y42

11. zl 26. bl

12. z2 27. t2

13. O 28. b2

14. ql 29. t2

15. q2 30. b3

16. q3 31. t3

A-5

BC BTAB 2 ii

Created from E23 section properties in processor TAB
NJ = Number of entries

NI = 6

Type-- real

Contents of each entry:

1. Cross-sectional area of axial element

2. Cross-sectional area of axial element

4.
Not used.

5.

6.

BUCK EVAL iset ncon

iset _ L,_ad set

neon = Constraint case

Created in processor EIG

NJ-_ 1

NI -- Number of eigenvalues

Type : real

Contents:

Buckling eigenvalues corresponding to each eigenvector in "BUCK MODE".

BUCK MODE iset neon

iset - Load set

neon = Constraint case

Created in processor EIG.

SYSVEC format. See "APPL FORC iset".

Contents:

Each block of data contains an eigenvector corresponding to an eigenvalue stored in "BUCK
EVAL".

A-6

CASE TITL iset 1

iset = Load set

Created in processor AUS

Number of blocks = Number of load cases in this load set

Type -- alphanumeric

Contents:

Each block contains the title for the corresponding load case in text.

CEM SPAR jdf2 0

jdf2 = square of the number of active degrees of freedom per joint
Created in processor M

A SPAR format system matrix. See "K SPAR jdf2 0"

Contents:

The unc,,n_trained system consistent mass matrix considering only the structural and

nonstructural distributed mass associated with the elements.

A-7

CON 0 ncon 0

ncon = Constraint case

Created from CON in processor TAB

NJ = Number of joints

NI= 1

Type = integer

Contents:

Each entry contains an integer representing the joint reference frame number and con-

strained components for that joint. This integer is interpreted as a bit pattern with two

bits allocated for each joint degree of freedom and the joint reference frame number stored

in the leading bits. For each joint degree of freedom the bit pattern 00 indicates that

component is free, the pattern 01 indicates that component is constrained to be zero, and

the pattern 10 indicates that a non-zero value of this component will be applied using the

APPL MOTI data set.

For example:

A joint with components 1, 2, 3 and 5 zeroed out and JREF := 7 (01112 would have the

integer 2894910 stored according to the following binary bit pattern:

1 J-oi-nt Motion Components

JREFnumber _-- 6- -_- -5 _ --4 _ i{- -_j_-- 2 1
O0 01 00 01 01 01t_..........l tt

Component 1 (constrained)

Component 2 (constrained)

Component 3 (constrained)

Component 4 (unconstrained)

Component 5 (constrained)

Component 6 (unconstrained)
JREF number = 7

Integer stored for this joint

= 1 _,, 1- 1

-- Ix 4--: 4

= 1 x 16 = 16

:- 0x 64= 0

= 1 x 256 = 256

= 0 × 1024 =: 0

= 7 x 4096- k- 28 672

=- 28 949

A-8

DEF "element-name"y z

"element-name"
Y

= elementname(e.g.,E43, S81,EX97)
= element type number

(E21-1 thru E44=12, $41---16,$61=17, $81=18, experimental=0)
= number of joints per element

Created in processor ELD

NJ = [blocksize/NI] where blocksize is determined by the ELD RESET

parameter LREC (default=896)

NI varies depending on the number of nodes in the element

Contents:

1. Element number

2. Group number

3. Element number within group

4. Stress reference frame number

5. N3 of corresponding dataset xx BTAB N3 N4

6. N4 where xx =: BA, BB, SA, . . .

7. Index of MATC entry for element material constants

8. Index of section property dataset entry for elem. section properties

9. Index of non-structural weight dataset entry (NSW)

10. Index of rigid link offset dataset entry (BRL)

11. index of beam orientation dataset entry (MREF)

12. Section type code

13. Node #1

14. Node #2

15. Node #3

16. Node #4

DEM DIAG 0 0

Created in processor E

SYSVEC format. See APPL FORC iset

Contents:

System mass matrix in diagonal form.

A-9

DIR "element-name"y z

"element-name"
Y
Z

= element name (e.g., E43, $81, EX97)

= element type number (E21=l thru E44:-12, experimental=0)

= number of joints per element

Created in processor ELD

NJ = 1

NI = 2O

Type -- integer

Contents:

1. Number of nodes

2. Element type number

3. Number of elements of this type

4. N4 in name of dataset "xx BTAB N3 N4" where xx is BA, BB, SA...

5. Length of E-file entry for this element

6. Offset of the end of segment I from the beginning of E-file entry

7. Offset of the end of segment 2 from the beginning of E-file entry

8. Offset of tile end of segment 3 from the beginning of E-file entry

9. Offset of the end of segment 4 from the b(,g]nmng of E-file entry

10. Offset of the end of segment 5 from the beginning of E-file entry

11. Offset of the end of segment 6 from the begmnmg of E-file entry

12. Offset of the end of segment 7 from the t)(,glnnmg of E-file entry

13. Offset of the end of segment 8 from the beginning of E-file entry

14. Offset of the end of segment 9 from the beginning of E-file entry

15. Precision of element stiffness in segment 5 of the E-file entry;

1 :-: single precision, 2 --: double precision

16. Number of stresses

17. Number of thermal loads

18. Number of degrees of freedom per node

19. MAJOR (= 1 for beams, :-2 for plates/shells, -=3 for solids)

2O. MINOR

A-10

I)1,";I, I';xx i._el, i_'as_"

I';xx I':h'n.,nt name

i,_et I,oa_l net

h'as(' I,oacl ('a,_e within load ,_el.

(!rea.t(,d in processor AIIN

N.I Numl.,r of eh'n.'nl,n of I,hi._ type

Type teaI

For 2-_iodeeh'I11e_I._:

N I (_

(.',olltenl,s of each entry:

I. I)isl)la('emenl,s in (lire('l.ion I

2. I)i,_l)la('etnl'nt in _lire('l,i()n 2

3. I)i,_pla('emell(, iu ([ire('l,i(_l_ 3

•I. I{ol,al, h)n al)mll, axis I

r'p. I_ol,;tl, iOll ab()lll. ;|xin

(L I_o|.;lt, iOII alH)lll, ;IX[n :|

These (l]_l)hl(-i,lllt,llt,,,-; alld r()l,_l,l,iOll,n ;ll'l, relative I,o a rel'erenre I'ran,e, I)ara.lh'l I,o I, hl, ('1('-

IIlIHl|,'."; I'('l'('rC'll('4' fl'_l, lll('. ;llld embedded ill node 2.

For 1';31 eh'nwntn:

N I 3

(;olll,t'lll,.'-; ()r each ¢'lll.l'y:

i. i)inl)ia('enlelll, of.joint 2 in dil'e('l,i()ll I

2. I)isl)la('emen(, of.ioinl, 3 in dir_,('i,h)n I

3. I)is|)la.('elnent Of .j()illt, :[ill dir('('l,i()ll 2

For 1';32 eh, m_,nt.n:

N I (_

Conl,enl.s of ea('l_ entry:

I. I)isi)la('(.menl, of joint '2 in dire('tion 3

2. I_ol,a l,ioll of.joint '2 al)olll, a.xin I

3. I(otai, h)n of.ioint 2 al)ollt axi,_ ?

•I. I)i_l)la('ement of.joinl, 3 in dire('l, ion 3

,5. I_otation or.joint 3 aboul, axi,_ I

(L i:[otatioll (')f .jOil'l|, :[a,boll|, axis

A-II

DISL Exx iset icase (continued)

For E33 elements

NI=9

Contents of each

1. Displacement

2. Displacement

3. Displacement

4.

5.

6.

7.

8.

9.

entry:

of joint 2 in direction 1

of joint 3 in direction 1

of joint 3 in direction 2

Displacement of joint 2 in direction 3

Rotation of joint 2 about axis 1

Rotation of joint 2 about axis 2

Displacement of joint 3 in direction 3

Rotation of joint 3 about axis 1

Rotation of joint 3 about axis 2

For E41 elements:

NI = 6

Contents ,,,_ :',.ch entry:

1. Displacement of joint 2 in

2. Displacement of joint 3 in

3. Displacement of joint 3 in

4. Displacement of joint 4 in

5. Displacement of joint 4 in

6. Displa(:ement of joint 4 in

direction l

direction 1

direction 2

direction 1

direction 2

direction 3

For E42 elements:

NI =6

Contents of each entry:

1. Displacement of joint 2 in direction 3

2. Rotation of joint 2 about axis l

3. Rotation of joint 2 about axis 2

4. Displacement of joint 3 in direction 3

5. Rotation of joint 3 about axis l

6. Rotation of joint 3 about axis 2

7. Displacement of joint 4 in direction 3

8. Rotation of joint 4 about axis 1

9. Rotation of joint 4 about axis 2

A-12

DISL Exx iset icase(concluded)

For E43 elements:

NI = 14

Contents of each entry:

1. Displacement of joint 1

2. Displacement of joint 1

3. Displacement of joint 2

4. Displacement of joint 1

5. Displacement of joint 2

6. Displacement of joint 2 in direction 3

7. Rotation of joint 2 about axis 1

8. Rotation of joint 2 about axis 2

9. Displacement of joint 3 in direction 3

10. Rotation of joint 3 about axis 1

11. Rotation of joint 3 about axis 2

12. Displ_tcement of joint 4 in direction 3.

13. Rotation of joint 4 about axis 1

14. Rotation of joint 4 about axis 2

2 in direction

3 in direction

3 in direction

4 in direction

4 in direction

For E44 elements:

NI =6

Contents of each entry:

1. Displacement of joint 2 in direction 1

2. Displacement of joint 3 in direction 1

3. Displacement of joint 3 in direction 2

4. Displacement of joint 4 in direction 1

5. Displacement of joint 4 in direction 2

6. Displacement of joint 4 in direction 3

A-13

"element-name" EFIL y z

"element-name"

Y

Z

= element name (e.g., E43, $81, EX97)

= element type number (E21=l thru E44=12, experimental=0)

= number of joints per element

Created by processor E, modified by processor GSF

NJ = Number of elements of this type

Type --- mixed integer and real

Contents:

The EFIL dataset contains NJ entries, written as one entry per nominal record of mixed

type data; each entry is made up of segments whose offsets from ttle beginning of the entry

may be determined from the DIR dataset for the corresponding element type:

Segment 1.

Segment 2.

Segment 3.

Segment a.

Segment 5.

Segment 6.

Segment 7.

Segment 8.

Segment 9.

Integer information, same as DEF dataset entry for this element

Material segment

Geometry segment (length is element dependent)

Property segment

Intrinsic stiffness segment

Stress recovery segment

Stress state segment

Thermal force segment

Thermal stress recovery segment

A-14

The geometry segment (seg. 3) is made up of blocks of real data which vary depending on

the element type as follows:

SPAR beam elements:

word 1 : Z

words 2-4 : DIJ(3)

words 5-13 : R(3,3)

words 14-31 : Q (3,3,2)

words 32-37 : XOFF(3,2)

SPAR 3-Node Plate Elements:

word 1 : AREA

words 2-7 : X(2,3)

words 8-43 : T(3,3,4)

SPAR 4-Node

word 1

word 2

word 3

,_ord 4

words 5-12

words 13-57

Plate Elements:

: AREA

: A123

: A124

: X34 (amount of warping)

: X(2,4)

: T(3,3,5)

SPAR. Solid Elements:

word 1

word 2 thru (1 _ 3,number of nodes)

words (2 t 3*number of nodes) thru

(10_- 12*number of nodes)

: VOL

: T(3,3,number of nodes4 1)

ELTS ISCT 0 0

Created in processor ELD.

NJ = Number of element types in the model

NI= 1

Type := integer

Contents:

N4 of "xx BTAB N3 N4" where xx

information for an element type.

BA,BC,SA which contains section property

A.15

ELTS NAME 0 0

Created in processorELD.
NI= 1
NJ = Number of element types in the model

Type = alphanumeric

Contents:

Alphanumeric element name of each element used in the model.

ELTS NNOD 0 0

Created in processor ELD.

NJ = Number of element types in the model
NI--- 1

Type = integer

Contents:

The number of nodes in each element type.

G D Exx y z

Exx := Element name

y =- Type number (E21 : 1 through E4,t : 12, $41=-16, $61=17, $81=18)

z = Number of joints/element

Created from element definitions in processor ELD.

NJ = Number of groups

NI =: 2

Type = integer

Contents of each entry:

1. Total number of elements within group

2. Cumulative total of elements in all previous groups

A-16

GSTR E31 iset icase

Contains stress resultants transformed to the global reference frame.

iset = Load set

icase= Load case within set

Created in processor GSF.

NJ = Number of E31 elements

NI= 11

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record: (Note - x, y, z are in global reference frame.)

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint #3

6.

7. T2_

8. T22

9. Tractive force in x-direction N_

10. Tractive force in y-direction Ny

11. Shearing force Nxy

Formulae:

S_. -= N_/thlckness

S u -- N_/thickness

Tx_ :: N_y/thickness

A-17

GSTR E32 iset icase

Contains stress resultants transformed to the global reference frame.

iset -- Load set

icase= Load case within set

Created in processor GSF.
NJ = Number of E32 elements

NI = 28

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint #3

6. Not used

7. Index of section property dataset entry for element section properties

8. Section type code

9. Mx Bending moment about-axis at joint 1

10. My Bending moment about y-axis at joint l

11. Mxu Twisting moment at joint 1

12. Qx Transverse shear in x-direction at joint l

13. Qy Transverse shear in y-directlon at joint 1

14. M_ Bending moment about x-axis at joint 2

15. My Bending moment about y-axis at joint 2

16. Mxy Twisting moment at joint 2

17. Qx Transverse shear in x-direction at joint 2

18. Qy Transverse shear in y-direction at joint 2

19. Mx Bending moment about x-axis at jo|nt ;]

20. My Bending moment about y-axis at joint 3

21. Mzy Twisting moment at joint 3

22. Qx Transverse shear in x-direction at joint 3

23. Qy Transverse shear in y-direction at joint 3

A-18

GSTR E32 iset ica_e(concluded)

24. Mz Bending moment about x-axis at the center

25. M_ Bending moment about y-axis at the center

26. Mx_ Twisting moment at the center

27. Qx Transverse shear in x-direction at the center

28. Qy Transverse shear in y-direction at the center

Formulae:

S_ = f4jMz

Sv = fsjMv

T_y = f6jMzy

fii = i/thickness for i and j = i,2,3

f42 = fs2 = -f62 = 6/(thickness) 2

f43 -= f53 := -fos = -6/(thickness) 2

A-19

GSTR E33 iset icase

Contains stress resultants transformed to the global reference frame.

iset -- Load set

icase -- Load case within set

Created in processor GSF.

NJ = Number of E33 elements

NI = 31

Type -- real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint _,_

6. Not used

7. Index of section property dataset entry for element section properties

8. Section type code

9. N_ Tractive force in x-direction

10. Ny Tractive force in y-direction

11. Nxy Shearing force

12. Mz Bending moment about x-axis at joint 1

13. My Bending moment about y-axis at joint 1

14. M_y Twisting moment at joint 1

15. Q_ Transverse shear in x-direction at joint I

16. Qy Transverse shear in y-direction at joint l

17. Mx Bending moment about x-axis at joint 2

18. My Bending moment about y-axis at joiat 2

19. M_y Twisting moment at joint 2

20. Q_ Transverse shear in x-direction at joint 2

21. Qy Transverse shear in y-direction at joint 2

22. M_ Bending moment about x-axis at joint 3

23. My Bending moment about y-axls at joint 3

A-20

GSTR E33 iset icase(concluded)

24. Mzy Twisting moment at joint 3

25. Q_ Transverse shear in x-directio_ at joint 3

26. Qy Transverse shear in y-direction at joint 3

27. Mx Bending moment about x-axis at the center

28. My Bending moment about y-axis at the center

29. M_y Twisting moment at the center

30. Qx Transverse shear in x-direction at tile center

31. Qy Transverse shear in y-direction at the center

Formulae:

Sx = fl1 N_ + f41Mx

Sy = f21 Ny + fsiMy

T_y = f31N_y + f61M_y

fij =: 1/thickness for i and j = 1,2,3

f42 - fsz --- -fez = 6/(thickness) 2

/43 --: f53 : -fo3 -- -6/(th|ckness) 2

A-21

GSTR E41 iset icase

Contains stress resultants transfornmd to the gh)bal reference frame.

iset Load set.

icase l,oad ('_u,_ewithin set

Created in processor (;Sl,'.
NJ _- Numlwr of E,II (dements

NI 23

Type real

The datm_et contains NJ n()minal records, N I items per record,

Contents of each recor(l:

I. (Iroup numl)er

2. Element number within group

3. Joint //I

-I. Joint //2

5. Joint //3

6. Joint //4

7. Index of se('tio,! prol)erty (lat, aset entry h)r eh,ment section I)roperties

8. Section type code

9. N_ Tractive h)rce in x-directiol, at joint I

10. N:_ rl'ractive h)rce in y-direction ;11.joint I

I I. Nx_ Shearing force at.ioi,_t I

12. N_ Tractive force in x-direction at joint 2

13. N:_ Tractive force in y-direction at joint 2

14. Nxu Shearing force ai,.joint 2

15. Nz Tractiv(' force in x-direction at joint :;

16. N,_ Tractive ik)rce in y-direction at joint :;

17. N_,_ Shearing force at joint 3

18. N_ Tractive force in x-direction at joint ,I

19. N u Tractive force in y-direction at joint .l

20. N_..u Shearing force at joint 4

21. N_ Tractive force in x-direction at the center

22. N_ Tractive force in y-direction at the center

23. N_,, Shearing force at the center

A-22

GSTR E41 iset icase (concluded)

Formulae:

Sz = Nx/thickness

Sy = Nv/thickness

T_ v = N_v/thickness

A-23

GSTR E42 iset icaze

Contains stress resultants transformed to the global reference frame,

iset = Load set

icase= Load case within set

Created in processor GSF.
NJ = Number of E42 elements

NI = 33

Type -- real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint g3

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. M_ Bending moment about x-axis at joint 1

10. My Bending moment about y-axis at joint l

ll. M_y Twisting moment at joint 1

12. Q_ Transverse shear in x-direction at joint 1

13. Qy Transverse shear in y-direction at joint 1

14. Mz Bending moment about x-axis at joint 2

15. My Bending moment about y-axis at joint 2

16. Mx_ Twisting moment at joint 2

17. Qz Transverse shear in x-direction at joint 2

18. Qy Transverse shear in y-direction at, joint 2

19. M_ Bending moment about x-axis at joint 3

20. My Bending moment about y-axis at joint 3

21. M_ Twisting moment at joint 3

22. Q_ Transverse shear in x-direction at joint 3

23. Qy Transverse shear in y-direction at joint 3

A-24

GSTR E42 iset icase (concluded)

24. Mz Bending moment about x-axis at joint 4

25. My Bending moment about y-axis at joint 4

26. Mzy Twisting moment at joint 4

27. Qx Transverse shear in x-direction at joint 4

28. Qy Transverse shear in y-direction at joint 4

29. Mz Bending moment about x-axis at the center

30. My Bending moment about y-axis at the center

31. Mzy Twisting moment at the center

32. Q_ Transverse shear in x-direction at the center

33. Qy Transverse shear in y-direction at the center

Formulae:

S:: = f4jMx

Sy= fsjMy

T_y = AjM_

f42 :]'52 : - f62 = -6/(thickness) 2

A3 : fs3 = -A3 = -6/(th|ckness) 2

A-25

GSTR E43 iset icase

Contains stress resultants transformed to the global reference frame.

iset = Load set

icase = Load case within set

Created in processor GSF

NJ = Number of E43 elements

NI = 48

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint @3

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. N_ Tractive force in x-direction at joint 1

10. Nu Tractive force in y-direction at joint 1

11. N_u Shearing force at joint 1

12. N_ Tractive force in x-direction at joint 2

13. Nu Tractive force in y-direction at joint 2

14. N_:y Shearing force at joint 2

15. N_ Tractive force in x-direction at joint 3

16. Ny Tractive force in y-direction at joint 3

17. Nxu Shearing force at joint 3

18. Nz Tractive force in x-direction at joint. 4

19. N u Tractive force in y-direction at joint, 4

20. Nzu Shearing force at joint 4

21. N_ Tractive force in x-direction at the center

22. N u Tractive force in y-direction at the center

23. N::y Shearing force at the center

A-26

GSTR E43 iset icase (concluded)

24. M_ Bending moment about x-axis at joint 1

25. My Bending moment about y-axis at joint 1

26. Mxy Twisting moment at joint 1

27. Qz Transverse shear in x-direction at joint 1

28. Qu Transverse shear in y-direction at joint 1

29. Mz Bending moment about x-axis at joint 2

30. My Bending moment about y-axis at joint 2

.t. IV13:y / YVIDblII lllUlll_llb _ JUlllb

32. Qz Transverse shear in x-direction at joint 2

33. Qy Transverse shear in y-direction at joint 2

34. Mz Bending moment about x-axis at joint 3

35. M_ Bending moment about y-axis at joint 3

36. M_ u Twisting moment at joint 3

37. Q_ Transverse shear in x-direction at joint 3

38. Qy]-_a,lsverse shear in y-direction at joint 3

39. Mx Bending moment about x-axis at joint 4

40. My Bending moment about y-axis at joint 4

41. M_y Twisting moment at joint 4

42. Q_ Transverse shear in x-direction at joint 4

43. Qy Transverse shear in y-direction at joint 4

44. M_ Bending moment about x-axis at the center

45. My Bending moment about y-axis at the center

46. Mzy Twisting moment at tile center

47. Qx Transverse shear in x-direction at the center

48. Qy Transverse shear in y-direction at the center

Formulae:

S_ :-= fljN_ + f4jM_

Sy = f21 Ny -F f.sj My

T_y :- fsjN:_y + f6jM_y

fii :- 1/thickness for i and j = 1,2,3

f42 = f52 = -foe = 6/(thickness) 2

h3 = fsa = -f6a = 6/(thickness) 2

A-27

GTIT Exx y z

Exx = Element name

y = Type number

(E21 = 1 through E44 = 12, $41=16, $61=17, $81=18 experimental = 0)

z = Number of joints/element

Created from element definitions in processor ELD,

NJ = Number of groups

NI = 15

Type = alphanumeric

Contents of each entry:

15 words of title for each group.

Default is blanks.

A-28

INV name ncon 0

name = name of the unfactored SPAR type matrix

ncon = constraint case applied during factorization

Created in processor INV

NJ = total number of joints in the model

Type = mixed real and integer

Contains the upper triangle of the factored system matrix. For a matrix, A, factored into

the product LDL T, INV A 2 0 dataset contains the inverse of the diagonal matrix D and

tho. triangllla.r rnatriY I, T _tnrprl hy rnw fnr th, _._i:,_rn m_f.r|v A el,l_|arf I'_ fr_|nf _f

2. The data set consists of one or more records with the default record size of 3584 words.

A joint group is included for every joint in the model. Each record contains the following;

JOINTS - The number of joint groups contained in this record. A joint group

is not allowed to span a record boundary.

INDEX(JMAX) - An array of integers pointing to the beginning of each joint group in

the record. JMAX is defaulted to 50 and JOINTS must be < JMAX.

Repeated JOINTS times:

JNT - The number of the current joint.

NZERO - the number of active degrees of freedom at tile current

joint. If NZERO equals zero, tile next joint group follows.

MAP(NZERO) - a list of the unconstrained degrees of freedom at

the current joint.

CONRNG - the number of joints connected to the current joint at
the time of its elimination.

CONECT(CONRNG-1) - a list of all connected joints in the upper

triangle of the factored matrix.

A(JDF, CONRNG, NZERO) - contains the 1/Dii and L_, compo-
nents of the factored matrix for this joint. For each active degree of

freedom (1 to NZERO) there is a vector JDF × CONRNG in length

which represents a row of the factored matrix.

A-29

JDF1 BTAB 1 8

Created from TAB processor START card.

NJ=I

NI = 18

Type = integer

Contents:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. A list specifying the order of each unconstrained degree of

12. freedom; zero if not active.

13. Example for d.o.f. 1, 2, and 6 unconstrained:

14. 1,2,0,0,0,3

15.

16. }
17. Not used.

18.

JLOC BTAB 2 5

Created from JLOC in processor TAB.

NJ -_ Number of joints

NI--3

Type--= real

Contents:

J :-= l, 2 Number of joints

I -- 1 X1 X2 ... Rectangular coordinates

2 Yl Y2 ... of each joint in the

3 Zl Z_ ... global reference frame

Total number of joints.

Number of active (unconstrained) degrees of freedom per joint.

Number of joint translational degrees of freedom not constrained.

A list of unconstrained joint degrees of freedom, filled in

consecutively from position number 4; unused values are zero.

Example of d.o.f. 1, 2, and 6 unconstrained:

1,2,6,0,0,0

A-30

JREF BTAB 2 6

Created by subprocssorJREF in processorTAB.
NJ = Total number of joints

NI = 1

Type -- integer

Contents:

Contains the joint reference frame number for each joint, corresponding to the entry in

dataset ALTR BTAB 2 4 which contains the definition of each joint reference frame.

JSEQ BTAB 2 17

Created by subprocessor JSEQ in processor TAB or by automatic joint ordering pro-

cessors.

NJ = number of joints in the model

NI= 1

Typ_ = integer

Contents:

The jth entry contains the elimination order number for joint j.

A-31

K SPAR jdf2 0

jdf2 = square of the number of degrees of freedom in the model, JDF.

Created in processor K.

NJ = total number of joints in the model

Type = single or double precision real

Contents:

Contains the assembled global stiffness matrix in the SPAR sparse matrix format. The

SPAR sparse matrix format stores only the nonzero JDF by JDF submatrlces in the upper

triangle of the symmetric system matrix. Submatrix i, j is nonzero if an element connects

joints i and j. A SPAR sparse matrix format data set consists of one or more fixed length

records with a default record size of 2240 words. A joint group is included for every joint

in the model starting in record 1 with the first joint to be eliminated in factorization.

Integer information is converted to the numeric type of the dataset before being stored in

the record. Each record contains the following:

JOINTS - The number of joint groups contained in this record. A joint group is not

allowed to span a record boundary.

Repeated JOINTS times:

CONRNG - The number of submatrices including the diagonal in the upper

triangle for tile current joint.

SUBMAP(('ONRNG) - A list of joints connected to the current joint (listed

first).

S(JDF, JDF, CONRNG) - The submatrices in the upper triangle of the

system matrix connected to the current joint. These correspond to the joints
listed in SUBMAP.

A-32

KMAP 0 nsubs ksize

nsubs = the total number of submatrices in a SPAR system matrix
for this model

ksize = the maximum number of joints active at any time during

the assembly of the system matrix

Created in processor TOPO and used by various processors to guide the assembly of system
matrices.

NJ = total number of joints in the model

Type = integer

Contents:

The purpose of KMAP is to furnish compact information about elements connected to each

joint in the model. It also defines which upper triangle submatrices will be nonzero for

each joint. During assembly of a SPAR system matrix, a work area S(JDF, JDF, KSIZE)

is used to hold the active submatrices. Information in KMAP shows where each piece of

an elemental matrix fits in the array S. Other information in KMAP shows which joint

pair i, j Is a_sociated with each submatrix in S.

A-33

KMAP 0 nsubs ksize (concluded)

KMAP consists of one or more fixed length records with a default record size of 1792.

A joint group is included for each joint in the model. Each joint group contains element

groups for elements connected to the joint. Each record contains the following:

JOINTS - Number of joint groups contained in this record. A joint group is not allowed

to span a record boundary.

Repeated JOINTS times:

JNT - The number of the current joint

LRNG - Number of elements which connect to JNT and any higher

numbered joints. These are elements which will contribute

to the upper triangle of the system matrix.

Repeated LRNG times:

NODES - Number of nodes in the current element type

biYPE - Integer number for this element type

NSE - Element number. For each element type, this number

begins at one and increments for each element of the

particular type.

ITYPE - Pointer into data set, "NS 0 0" for this element type

NSCT- N4 of the section proper(.y data set name for this

element type. See data set "ELTS ISCT 0 0".

ISCT - Index of section property data set entry for element

section properties.

MAP (NODES * (NODES + 1)/2) Location in the work area, S,

where each submatrix in the elemental submatrix is to

be summed. If MAP(I) (0, then the transpose of
the elemental submatrix should be summed into S.

CONRNG - The number of submatrices including the diagonal in

tile upper triangle for the current joint.

CONECT(CONRNG-1) - A list of joints connected to the current joint.

SUBMAP(CONRNG) - A pointer into the work array, S, for each

submatrix associated with the current joint.

A-34

LAM OMB nsect 1

Created using AUS/TABLE

Contains the laminate data for shell section number

NI = 3

NJ = Number of layers

Type --- Real

Contents of each entry:

1. Material number

2. Layer thickness

3. Layer orientation

Repeated NJ times.

"nsect'.

A-35

LAM O3D nsect 1

Created using AUS/TABLE

Contains the laminate data for solid section number "nsect'.

NI = 3

NJ = Number of layers

Type = Real

Contents of each entry:

1. Material number

2. Layer thickness

3. Layer orientation

Repeated NJ times.

A-36

MATC BTAB 2 2

Created from MATC in processor TAB.

NJ = Number of material types

NI = 10

Type = real

Contents of each entry:

°

2.

3.

4.

5.

,

7.

8}9.

10.

E = Modulus of elasticity

u = Poisson's Ratio

G = +
p = Weight per unit volume

al = Thermal expansion coefficient, direction x

a2 = Thermal expansion coefficient, direction y

O = Angle between element reference frame and the

frame used for input of al and a2.

Not used.

MREF BTAB 2 7

-,rea_ed from MREF in processor ,r,1 .r_ £.j,

NJ = Number of beam orientation entries

NI = 5

Type = real

Contents of each entry:

Format 1 (Default)
1. Beam axis NB

2. Global axis NG

3. 1. if cosine between NB and NG is positive, -l. if negative

4. Cosine of angle between NB and NG

5. 1. (indicating format =: l)

Format 2

1. X1

2. X2

3. X3

4. I 1 axis orientation

5. -1. (indicating format = 2)

A-37

MSTR E31 iset icase

Contains stress resultants transformed to the material reference frame.

The

iset = Load set

icase -- Load case within set

Created in processor GSF.
NJ = Number of E31 elements

NI = 11

Type = real

dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint _3

6. Tll

7. 7'22

8. T22

9. Tractive force in x-direction Nr.

10. Tractive force in y-direction N.v

11. Shearing force N_y

Formulae:

(Note - x, y, z are in material reference frame.)

S_. =: N_/thickness

Sy = Ny/thickness

T_,_ = N_y/thickness

A-38

MSTR E32 iset icase

Contains stressresultants transformed to the material reference frame.

Vr_li ne

iset = Load set

icase = Load case within set

Created in processor GSF.

NJ = Number of E32 elements

NI = 28

Type = real

dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint _3

6. Not used

7. Index of section property dataset entry for element section properties

8. Section type code

9. Mx Bending moment about-axis at joint l

i0. _fy Bending moment about y-axis at joint i

11. M_y Twisting moment at joint l

12. Qx Transverse shear in x-direction at joint 1

13. Qy Transverse shear in y-direction at joint 1

14. Mx Bending moment about x-axis at joint 2

15. M v Bending moment about y-axis at joint 2

16. M_ v Twisting moment at joint 2

17. Q_ Transverse shear in x-direction at joint 2

18. Qy Transverse shear in y-direction at joint 2

19. M_ Bending moment about x-axis at joint 3

20. My Bending moment about y-axis at joint 3

21. M_v Twisting moment at joint 3

22. Q_ Transverse shear in x-direction at joint 3

23. Q,v Transverse shear in y-direction at joint 3

A-39

MSTR E32 iset icase (concluded)

24. Mx Bending moment about x-axis at the center

25. M v Bending moment about y-axis at the center

26. Mxy Twisting moment at the center

27. Qx Transverse shear in x-direction at the center

28. Qu Transverse shear in y-direction at the center

Formulae:

S_ = f4iM_

Sv == hi My

Txy : f6jMzy

fi.i = 1/thickness for i and j = 1, 2, 3

f4: : f.52 : -f_2 :- 6/(thickness) 2

f43 = fs3 = - fo3 = -6/(thickness) 2

A-40

MSTR E33 iset icase

Contains stress resultants transformed to the material reference frame.

iset = Load set

icase = Load case within set

Created in processor GSF.
NJ = Number of E33 elements

NI = 31

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint _3

6. Not used

7. Index of section property dataset entry for element section properties

8. Section type code

9. Nz Tractive force in x-direction

!orcelu. Ivy Tractive in y-tnrecuon

11. Nzv Shearing force

12. M_ Bending moment about x-axis at joint l

13. My Bending moment about y-axis at joint 1

14. Mz_ Twisting moment at joint 1

15. Q_ Transverse shear in x-direction at joint l

16. Qy Transverse shear in y-direction at joint 1

17. Mz Bending moment about x-axis at joint 2

18. My Bending moment about y-axis at joint 2

19. Mzy Twisting moment at joint 2

20. Q_ Transverse shear in x-direction at joint 2

21. Qy Transverse shear in y-direction at joint 2

22. Mx Bending moment about x-axis at joint 3

23. My Bending moment about y-axis at joint 3

A-41

MSTR E33 iset icase (concluded)

24. Mxy Twisting moment at joint 3

25. Qz Transverse shear in x-direction at joint 3

26. Q_ Transverse shear in y-direction at joint 3

27. M_ Bending moment about x-axis at the center

28. My Bending moment about y-axis at the center

29. Mzy Twisting moment at the center

30. Q_ Transverse shear in x-direction at the center

31. Qy Transverse shear in y-direction at the center

Formulae:

Sz = flj Nz + f4.iMz

Sy = f2.i Ny + fsj My

T_y = fajN_y + fojM::y

fii = 1/thickness for i and j = 1,2,3

]'42 = fs2 = -f6_ = 6/(thickness) 2

f43 = f._3 = -f63 = -6/(thickness) 2

A-42

MSTR E41 iset icase

Contains stress resultants transformed to the material reference frame.

iset = Load set

icase = Load case within set

Created in processor GSF.

NJ = Number of E41 elements

NI = 23

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint #3

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. N_ Tractive force in x-direction at joint !

10. Ny Tractive force in y-direction at joint 1

11. Nxy Shearing force at joint 1

12. Nx Tractive force in x-direction at joint 2

13. Ny Tractive force in y-direction at joint 2

14. N_y Shearing force at joint 2

15. Nx Tractive force in x-direction at joint 3

16. Ny Tractive force in y-direction at joint 3

17. Nxy Shearing force at joint 3

18. N_ Tractive force in x-direction at joint 4

19. Ny Tractive force in y-direction at joint 4

20. Nzy Shearing force at joint 4

21. N_ Tractive force in x-direction at the center

22. N u Tractive force in y-direction at the center

23. N_y Shearing force at the center

A-43

MSTR E41 iset icase (concluded)

Formulae:

S_ = N_/thickness

Sy = Nu/thickness

Tzu = N_y / thickness

A-44

MSTR E42 iset icase

Contains stress resultants transformed to the material reference frame.

iset -- Load set

icase = Load case within set

Created in processor GSF.

NJ = Number of E42 elements

NI = 33

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joih;, 7,_3

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. Mx Bending moment about x-axis at joint l

!0. My Bending moment about y-axis at joint l

ll. M_y Twisting moment at joint 1

12. Q_ Transverse shear in x-direction at joint l

13. Qy Transverse shear in y-direction at joint 1

14. M_ Bending moment about x-axis at joint 2

15. M v Bending moment about y-axis at joint 2

16. M_y Twisting moment at joint 2

17. Qx Transverse shear in x-direction at joint 2

18. Qv Transverse shear in y-direction at joint 2

19. M_ Bending moment about x-axis at joint 3

20. Mv Bending moment about y-axis at joint 3

21. Mzu Twisting moment at joint 3

22. Q_ Transverse shear in x-direction at joint 3

23. Qv Transverse shear in y-direction at joint 3

A-45

MSTR FA2 iset icase (concluded)

24. Mz Bending moment about x-axis at joint 4

25. My Bending moment about y-axis at joint 4

26. Mzu Twisting moment at joint 4

27. Qz Transverse shear in x-direction at joint 4

28. Qy Transverse shear in y-direction at joint 4

29. Mz Bending moment about x-axis at the center

30. M v Bending moment about y-axis at the center

31. Mzy Twisting moment at the center

32. Qz Transverse shear in x-direction at the center

33. Qy Transverse shear in y-direction at the center

Formulae:

S_ = f4j Mz

Sy = f ._jMy

Tzy = f6jM_y

f42 : A2 :--A2 =-6/(thickness) 2

f4s = fsa = --Aa = -6/(thickness) 2

A-46

MSTR E43 iset icase

Contains stress resultants transformed to the material reference frame.

iset = Load set

icase = Load case within set

Created in processor GSF

NJ = Number of E43 elements

NI = 48

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint _3

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. N_ Tractive force in x-direction at joint l

i0. Ny Tractive force in y-direction at joint L

ll. N_y Shearing force at joint l

12. Nx Tractive force in x-direction at joint 2

13. Ny Tractive force in y-direction at joint 2

14. Nxy Shearing force at joint 2

15. Nx Tractive force in x-direction at joint, 3

16. Ny Tractive force in y-direction at joint 3

17. N_y Shearing force at joint 3

18. N_ Tractive force in x-direction at joint 4

19. Ny Tractive force in y-direction at joint 4

20. N_:y Shearing force at joint 4

21. N_ Tractive force in x-direction at the center

22. N_ Tractive force in y-direction at the center

23. Nzy Shearing force at the center

A-47

MSTR E43 iset icase (concluded)

24. Mx Bending moment about x-axis at joint 1

25. My Bending moment about y-axis at joint 1

26. Mzy Twisting moment at joint 1

27. Qx Transverse shear in x-direction at joint 1

28. Qy Transverse shear in y-direction at joint 1

29. Ms Bending moment about x-axis at joint 2

30. M r Bending moment about y-axis at joint 2

31. M_y Twisting moment at joint 2

32. Qz Transverse shear in x-direction at joint 2

33. Qy Transverse shear in y-direction at joint 2

34. Ms Bending moment about x-axis at joint 3

35. Ms Bending moment about y-axis at joint 3

36. M_y Twisting moment at joint 3

37. Q_ Transverse shear in x-direction at joint 3

38. Qy Traxisverse shear in y-direction at joint 3

39. Ms Bending moment about x-axis at joint 4

40. My Bending moment about y-axis at joint 4

41. M_y Twisting moment at joint 4

42. Qx Transverse shear in x-direction at joint 4

43. Q_ Transverse shear in y-direction at joint 4

44. Mx Bending moment about x-axis at the center

45. M r Bending moment about y-axis at the center

46. M_y Twisting moment at the center

47. Q_ Transverse shear in x-direction at the center

48. Qy Transverse shear in y-direction at the center

Formulae:

S_ -- f_i Nx t f4j M_

Sy : f2j Ny + f._J My

Tz_ = fajNxu + f61Mxu

fij = 1/thickness for i and j = 1,2,3

f42 ::: f._ f6_ :: 6/(thickness) 2

f43 =]'_3 = -f63 = 6/(thickness) 2

A-48

NDAL 0 0 0

Created from TITLE card in processor TAB.

NJ = 1

Type = alphanumeric

Contents:

Library title.

NODA PRES iset !

iset = Load set

Created using subprocessor TABLE in processor AUS.

NJ = Number of joints
NI=I

Number of blocks = Number of load cases in this load set.

Type - real

Contents.

Each block of data contains nodal pressures for every joint in the structure.

corresponds to one load case.

One block

NODA TEMP iset 1

iset -- Load set

Created using subprocessor TABLE in processor AUS.

NJ = Number of joints
NI= 1

Number of blocks ==Number of load cases in this load set.

Type-- real

Contents:

Each block of data contains nodal temperatures for every joint in the structure. One block

corresponds to one load case.

A-49

NSO00

Created in processor ELD.

NJ = Number of element types present

NI--1

Type = integer

Contents of each entry:

1. Offset of the end of segment 1

2. Offset of the end of

3. Offset of the end of

4. Offset of the end of

5. Offset of the end of

6. Offset of the end of

7. Offset of the end of

8. Offset of the end of

9.

10.

11.

12.

13.

14.

15.

segment 2

segment 3

segment 4

segment 5

segment 6

segment 7

segment 8

from the beginning

from the begmnmg

from the beginning

from the beginning

from the beginning

from the beginning

from the beginning

from the begmnmg

of E-file entry

of E-file entry

of E-file entry

of E-file entry

of E-file entry

of E-file entry

of E-file entry

of E-file entry

Offset of the end of segment 9 from the beginning of E-file entry

Precision of element stiffness in segment 5 of the E-file entry

1 = single precision, 2 = double precision

Number of stresses

Number of thermal loads

Number of degrees of freedom per node

MAJOR

MINOR

(The contents of each entry are the same as words 6-20 of the DIR dataset for the element

type.)

A-50

OMB DATA 1 1

Created from AUS/TABLE

Contains the material properties for the 2-D section types.

NI = 9

NJ = Number of materials

Type = Real

Contents of each entry:

1. Young's Modulus, El

2. Poisson Ratio, /212 (EltP21 = E2vl2)

3. Young's Modulus, E2

4. Shear Modulus, Gl2

5. Shear Modulus, GI3

6. Shear Modulus, G23

7. Linear "i'hermal Expansion Coefficients, al

8. Linear Thermal Expansion Coefficients, a2

9. Weight Density (weight per unit area)

Repeated NJ times.

cL "__ A-51

O3D DATA 1 1

Created using AUS/TABLE

Contains the material properties for the 3-D section types.

NI = 13

NJ = Number of layers

Type = Real

Contents of each layer:

1. Young's Modulus, El

2. Young's Modulus, E2

3. Young's Modulus, E3

4. Shear Modulus, Gt2

5. Shear Modulus, G2a

6. Shear Modulus, G13

7. Poisson Ratio, vt2 (Ett/21 = Ezvt2)

8. Poisson Ratio, v23 (E2u32 = E_v23)

9. Poisson Ratio, v13 (ELY31 = E3vl3}

10. Weight density (weight per unit volume}

11. Linear Thermal Expansion Coefficient, al

12. Linear Thermal Expansion Coefficient, c_z

13. Linear Thermal Expansion Coefficient, a3

Repeated NJ times.

A-52

PRES Exx iset icase

Exx = Element name

iset = Load set

icase = Load case within Load set

Created in processor AUS

NJ = Number of elements of this type

Type = real

Not defined for 2-node elements.

For 3-node elements:

NI=3

Contents of each entry:

1. Pressure at joint 1

2. Pressure at joint 2

3. Pressure at joint 3

For 4-node elements:

NI=4

Contents of each entry:

1. Pressure at joint 1

2. Pressure at joint 2

3. Pressure at joint 3

4. Pressure at joint 4

A-53

PROP BTAB 2 101

Created from shell section properties in processor LAU

NI = 4O

NJ = Number of shell sections

Type = real

Contents include the stiffness coefficients for a first-order transverse shear deformation

theory.

Contents of each entry:

1. All 21. Bl6

2. A21 22. Dll

3. A16 23. D12

4. Bll 24. D16

5. B_2 25. Bl2

6. B16 26. B22

7. A12 27. B26

8. A22 28. D12

9. A26 29. D22

10. Bl2 30. D2_

11. B22 31. BI6

12. B26 32. B26

13. Al6 33. B66

14. A26 34. Dl6

15. A66 35. D26

16. B16 36. D66

17. B26 37. CS44

18. B66 38. CS4._

19. Bll 39. CS45

20. B12 40. CSss

where Aij are the extensional stiffness coefficients,

stiffness coefficients, Dii are the bending stiffness
shear stiffness coefficients.

Bij are the bending-extensional coupling

coefficients, and CSii are the transverse

A-54

PROP BTAB 2 101 (concluded)

These stiffness coefficients relate the force and moment resultants to the middle surface

strains and curvatures. That is,

Ny

Nzy

t J

All A12 A16

AI_ A22 A26

A16 A26 A66

Bll B12 Blo
D D D

u12 L_22 u26

Bl6 B26 B66

Bll BI_ B16

B12 B22 B26

B16 B26 B66

Dll D12 D16

"12 "'22 "u26

Dl6 D_6 Do6

I 0

f'x

0

_y

"Y_u

tO,x

--_xy

and

A-55

PROP BTAB 2 21

Created from solid section properties in processor LAU

NI = 31

NJ = Number of solid sections

Type = Real

Contents of each entry:

1. weight density 16.

(weight/unit volume) 17.

2: all 18.

3. a21 19.

4. a22 20.

5. a31 21.

6. a32 22.

7. a33 23.

8. a41 24.

9. a42 25.

10. a43 26.

1 I. a44 27.

12. as_ 28.

13. a52 29.

14. a53 30.

I5. a54 31.

a55

a61

a62

a63

a64

a65

a66

linear thermal expansion coefficient, a=

linear thermal expansion coefficient, av

linear thermal expansion coefficient, az

Y=z, reference stress for use in stress display

.,

Yzz,

Y_u,

Yy_,

Yxz,

reference stress for

reference stress for

reference stress for

reference stress for

reference stress for

use in stress display

use in stress display

use in stress display

use in stress display

use in stress display

The default values of each reference stress is 1.0.

For an orthotropic material with the 1-, 2-, and 3-directions aligned with the x-, y-, and

z-directions respectively, the flexibility matrix components in terms of the engineering

constants are

[aij] ::

! _ _'-_ 0 0 0
E, E2 E::

_ v__ ±. ._ v_: 0 0 0
E, E_. E::

_v___ __e__ __1 0 0 0
El E-_ E3

0 0 0 ' 0 0
G23

l 0
0 0 0 0 c,,_

0 0 0 0 0 '

A-56

PROP BTAB 2 21 (concluded)

where

Ex, E2, E3 -- Young's moduli in 1, 2, and 3 directions, respectively.

uij = Poisson's ratio for transverse strain in the j-direction

when stressed in the/-direction.

I n __ I ,4.1..-I..

(-/23, G13, GI2 = shear moduli in the 2-3, 1-3, and ,--. pl_nc_, _e_pe_._lv=,y.

vii _ vii i,j = 1,2,3
Ei Ej

Thus, there are three reciprocal relations that must be satisfied for an orthotropic material.

Moreover, only u12, ul3, and u23 need be further considered since u21, u31, and u32 can

be expressed in terms of the first-mentioned Poisson's ratios and the Young's moduli.

A-57

QJJT BTAB 2 9

Created in processor TAB.

NJ = Number of Joints

NI = 9

Type = real

Contents of each entry:

1. all

2. a2_

3. a31

4. a12

5. a22

6. a32

7. a13

8. a23

9. a33

Formula:

Each entry contains a 3 _ 3 matrix to convert, globa] reference frame to alternate reference

frame for that joint.

x. } [a,, a,2Y_ = |a21 a2_
Za L a31 a32

coordinates in

alternate reference frame

a13 { X_I }
a23 Yg

a33 • Zg

coordinates in

global reference frame

A-58

SA BTAB 2 13

Created from shell section properties in processor TAB.

NJ = Number of entries

Type = real

Contents vary according to section type:

For MEMBRANE, PLATE, ISOTROPIC or UNCOUPLED section types NI - 43

Contents of each entry:

1. Number indicating section type

1 MEMBER

2 PLATE

3 ISOTROPIC or UNCOUPLED

2. Pointer to entry of NMAT

containing material constants

Structural weight/area.

4.

5.

6.

7.

8.

9.

lt"t

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

d,,]
dl_

d22 I

d13

d23

d33

tz44

d45

dss

d46

ds6

d66

flexibility

coefficients

Not used.

26. fll

a't _'P f

_1. J21

28. f31

29. f41

30. fs1

31. f61

32. f12

33. f22

34. f32

35. f42

36. f52

37. f62

38. f13

o f..

40. f33

41. f43

42. f53

43. /63

stress

coefficients

A-59

SA BTAB 2 13 (continued)

For COUPLED section types:

NI = 43

Contents of each entry:

1. Number indicating section type

4 = COUPLED

2. Pointer to entry of NMAT

containing material constants

3. Structural weight/area

4. dll

5. d12

6. d22

7. d13

8. d23

9. d33

10. d14

11. d24

12. d34

13. d44

14. d15

15. d25

16. d35

17. d4s

18. ds5

19. dl6

20. d26

21. d36

22. d46

23. ds6

24. d66

flexibility

coefficients

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Number of layers

fl 1

f21

f31

f41

f51
f61

fl2

/22

/32

/42
f._2

f62

fl3

f2._
f33

f43

f53

f6_

stress

coefficients

A-60

SA BTAB 2 13 (concluded)

For LAMINATE section types: NI : 25 + (18 times number of layers)

Contents of each entry:

iI

1

_t_o

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Number indicatingsectiontype

5 = LAMINATE

Pointer to entry of MArC

containing material constants

t_tructuraiweight/area

dll

d12

d22

dl3

d23

d33

d14

d24

d34

d44
flexibility

dis coefficients

d2s

das

d45

dss

d16

d26

d36

d46

ds6

d66

25.

26.

43.

44.

61.

62.

Number of layers

|
l stressrecovery

coefficientsfor

firstlayer

stressrecovery

coefficientsfor

second layer

-* 25 + 18 * number of layers)

Eighteen additional values for

each successive layer.

A-61

SB BTAB 2 14

Created from subprocessor SB in processor TAB.

NJ = Number of entries

NI = 4

Type = real

Contents of each entry:

1. Thickness of E44 element

3. Not used.

4.

STAT DISP iset ncon

iset -- Load set

ncou = Constraint case

Created in processor SSOL

SYSVEC format. See _'APPL FORC iset".

Contents:

Each entry contains static displacements for that joint in each active direction.

STAT REAC iset ncon

iset = Load set

ncon= Constraint case

Created in processor SSOL
SYSVEC format. See "APPL FORC iset'.

Contents:

Each entry contains static reactions for that joint in each active direction.

A-62

STRS E21 iset icase

iset = Load set

icase -- Load case within set

Created in processor GSF.

NJ = Number of E21 elements

NI = 52

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

Max. combined P/A + bending (tension)

Max. combined P/A + bending (compression}

P/A
Transverse shear stress, S

Transverse shear stress, S

°

6.

7.

8.

9.

10. Twist shear

11. Shear force, end

12. o,___ L-...... ..,

13. Axial force, end

14. Moment, end 1,

15. Moment, end 1,

16. Moment, end 1,

17. Shear force, end

18. Shear force, end

19. Axial force, end

20. Moment, end 2,

21. Moment, end 2,

22. Moment, end 2,

23. Not used

24. I1

25. al

26. I2

1, direction 1

1, direction 3

direction 4

direction 5

direction 6

2, direction 1

2, direction 2

2, direction 4

direction 4

direction 5

direction 6

27. a2

28. Area

29. fl

30. f2

31. z{

32. z2

33. O

34. ql

35. q2

36. q3

37. NY = number of points

for stress

38. Yl I

39. Y12

40. Y21

41. Y22

42. Y31

43. Y32

44. Y4]

45. Y42

46. bl

47. t]

48. b2

49. t2

50. b3

51. t3

A-63

STRS E22 iset icase

iset ----Load set

icase = Load case within set

Created in processor GSF

NJ = Number of E22 elements

NI = 16

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Force in direction 1 at joint 1

6. Force in direction 2 at joint 1

7. Force in direction 3 at joint 1

8. Moment about axis 1 at joint 1

9. Moment about axis 2 at joint 1

10. Moment about axis 3 at joint 1

11. Force in direction 1 at joint 2

12. Force in direction 2 at joint 2

13. Force in direction 3 at joint 2

14. Moment about axis 1 at joint 2

15. Moment about axis 2 at joint 2

16. Moment about axis 3 at joint 2

STRS E23 iset icase

iset = Load set

icase -- Load case within set

Created in processor GSF

NJ = Number of E23 elements

NI = 6

Type --= real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Force in element

6. Stress in element

A-64

STRS E24 iset icase

iset = Load set

icase = Load case within set

Created in processor GSF

NJ -- Number of E24 elements

NI = 18

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Axial force at joint 1

6. Transverse shear at joint 1

7. Moment at joint 1

8. Axial force at joint 2

9. Transverse shear at joint 2

10. Moment at joint 2

1 _1. __^,a,A..:_! stress at joint 1

12. Shear stress at joint 1

13. Bending stress on upper surface at joint 1

14. Bending stress on lower surface at joint 1

15. Axial stress at joint 2

16. Shear stress at joint 2

17. Bending stress on upper surface at joint 2

18. Bending stress on lower surface at joint 2

A-65

STRS E25 iset icase

iset -- Load set

icase= Load case within set

Created in processor GSF.

NJ = Number of E25 elements

NI = 16

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Force in direction 1 at joint 1

6. Force in direction 2 at joint 1

7. Force in direction 3 at joint]

8. Moment about axis 1 at joint

9. Moment about axis 2 at joint

10. Moment about axis 3 at joint

11. Force in direction 1 at joint 2

12. Force in direction 2 at joint 2

13. Force in direction 3 at joint 2

14. Moment about axis 1 at joint

15. Moment about axis 2 at joint

16. Moment about axis 3 at joint

1

1

1

2

2

2

A-66

STRS E31 iset ica_,_e

Contains stress resultants calculated in the element refe, rence frame.

iset I,oad set

lease l,oad case within set

Created in processor (1S1,'.
NJ Number of E31 elements

NI II

Type - real

The dataset contains N.I nominal records, N I items per record.

Contents of each record:

I. Group number

2. Element number within group

3..loint J/I

,I..]oint /t2

5..ioini, i/3

6. 7'11

7. 7:z..

9. Tractive force in x-direction N_.

10. Tractive force in y-direction N._

I1. Shearing force N_._

For ITlll lae:

,','_ N:/thickness

S,,I N:+/thickness

7_, N:,,+/thickness

A-67

STRS E32 iset icase

Contains stress resultants calculated in the element reference frame.

The

iset = Load set

icase -- Load case within set

Created in processor GSF.

NJ = Number of E32 elements

NI = 28

Type = real

data.set contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint #3

6. Not used

7. Index of section property dataset entry for element section properties

8. Section type code

9. Ms Bending moment about-axis at joint 1

10. l_ly Bending moment about y-axis at joint l

11. M:_y Twisting moment at joint 1

12. Qx Transverse shear in x-direction at joint 1

13. Qy Transverse shear in y-direction at joint 1

14. Mz Bending moment about x-axis at joint 2

15. My Bending moment about y-axis at joint 2

16. Mxy Twisting moment at joint 2

17. Qx Transverse shear in x-direction at joint 2

18. Qy Transverse shear in y-direction at joint 2

19. M_ Bending moment about x-axis at joint 3

20. My Bending moment about y-axis at joint 3

21. M_y Twisting moment at joint 3

22. Qz Transverse shear in x-direction at joint 3

23. Qy Transverse shear in y-direction at joint 3

A-68

STRS E32 iset icase (concluded)

24. Mx Bending moment about x-axis at the center

25. My Bending moment about y-axis at the center

26. Mz_ Twisting moment at the center

27. Q_ Transverse shear in x-direction at the center

28. Qy Transverse shear in y-direction at the center

Formulae:

S. = f41M.

Sy = fsjMu

Txy = AyMxy

fiY = 1/thickness for i and j = 1,2,3

f4z = fsz = --fo2 = 6/(thickness) 2

f43 = f53 = - f63 : -6/(thickness) 2

A-69

STRS E33 iset icase

Contains stress resultants calculated in the element reference frame.

iset = Load set

icase = Load case within set

Created in processor GSF.
NJ = Number of E33 elements

NI = 31

Type = real

The data.set contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joi,_ 7,_3

6. Not used

7. Index of section property dataset entry for element section properties

8. Section type code

9. Nx Tractive force in x-direction

10. Ny Tractive force in y-direction

11. Nxy Shearing force

12. M_ Bending moment about x-axis at joint 1

13. My Bending moment about y-axis at joint 1

14. M::y Twisting moment at joint l

15. Q_ Transverse shear in x-direction at joint 1

16. Qy Transverse shear in y-direction at joint l

17. M_ Bending moment about x-axis at joint 2

18. My Bending moment about y-axis at, joint 2

19. M_.y Twisting moment at joint 2

20. Qz Transverse shear in x-direction at joint 2

21. Qy Transverse shear in y-direction at joint 2

22. Mx Bending moment about x-axis at .joint 3

23. My Bending moment about y-axis at joint 3

A-70

STRS E33 iset icase (concluded)

24. Mzy Twisting moment at joint 3

25. Qz Transverse shear in x-direction at joint 3

26. Qy Transverse shear in y-direction at joint 3

27. Mz Bending moment about x-axis at the center

28. M v Bending moment about y-axis at the center

29. Mzy Twisting moment at the center

30. Qz Transverse shear in x-direction at the center

31. Qy Transverse shear in y-direction at the center

Formulae:

S_ --- f_jN_ + f4iMx

sy = 12j Nu + IsiM_

T_y = f3jN_ + f6jM_ v

fij = 1/thickness for i and j = 1,2,3

f42 = fs2 = -re2 = 6/(thickne_) _

f43 = fsz = -f63 = -6/(thieknm) 2

A-71

STRS E41 iset icase

Contains stress resultants calculated in the element reference frame.

iset ----Load set

icase= Load case within set

Created in processor GSF.

NJ = Number of E41 elements

NI = 23

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint #3

6. Joint _:4

7. Index of section property dataset entry for element section properties

8. Section type code

9. Nz Tractive force in x-direction at joint l

10. Ny Tractive force in y-direction at joint 1

11. Nzy Shearing force at joint 1

12. Nz Tractive force in x-direction at joint 2

13. Ny Tractive force in y-direction at joint 2

14. Nx_ Shearing force at joint 2

15. N_. Tractive force in x-direction at joint 3

16. Ny Tractive force in y-direction at joint 3

17. Nz_ Shearing force at joint 3

18. Nz Tractive force in x-direction at joint 4

19. Ny Tractive force in y-direction at joint 4

20. Nzy Shearing force at joint 4

21. Nz Tractive force in x-direction at the center

22. Ny Tractive force in y-direction at the center

23. Nzy Shearing force at the center

A-72

STRS E41 iset icase (concluded)

Formulae:

S= = N=/thickness

S_ = Ny/thickness

Tx_ = N=v/thickness

A-73

STRS E42 iset icase

Contains stress resultants calculated in the element reference frame.

The

iset = Load set

icase = Load case within set

Created in processor GSF.

NJ = Number of E42 elements

NI = 33

Type = real

dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. JoinL _3

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. Mz Bending moment about x-axis at joint 1

10. My Bending moment about y-axis at joint 1

11. Mxy Twisting moment at joint 1

12. Qz Transverse shear in x-direction at joint 1

13. Qy Transverse shear in y-direction at joint 1

14. Mx Bending moment about x-axis at joint 2

15. Mu Bending moment about y-axis at joint 2

16. Mxy Twisting moment at joint 2

17. Q_ Transverse shear in x-direction at joint 2

18. Qy Transverse shear in y-direction at joint 2

19. Mx Bending moment about x-axis at joint 3

20. My Bending moment about y-axis at joint 3

21. Mz_ Twisting moment at joint 3

22. Qx Transverse shear in x-direction at joint 3

23. Qy Transverse shear in y-direction at joint 3

A-74

STRS E42 iset icase (concluded)

24., Mz Bending moment about x-axis at joint 4

25. M v Bending moment about y-axis at joint 4

26. Mzy Twisting moment at joint 4

27. Qz Transverse shear in x-direction at joint 4

28. Qy Transverse shear in y-direction at joint 4

29. M_ Bending moment about x-axis at the center

30. M v Bending moment about y-axis at the center

31. Mzy Twisting moment at the center

32. Qz Transverse shear in x-direction at the center

33. Q_ Transverse shear in y-direction at the center

Formulae:

S_ = f4.iM_

Sy= AyMy

Tzy : f6yMzy

f42 = f52 : --f62 "'"-6/(thickneu) _

h3 = f.s3 : -f63 = -6/(thickneu) 2

A-75

STRS E43 iset icase

Contains stress resultants calculated in the element reference frame.

iset : Load set

icase : Load case within set

Created in processor GSF

NJ = Number of E43 elements

NI = 48

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

I. Group number

2. Element number within group

3. Joint #I

4. Joint #2

5. Joint _5

6. Joint #4

7. Index of section property dataset entry for element section properties

8. Section type code

9. N_ Tractive force in x-direction at joint 1

10. Ny Tractive force in y-direction at joint 1

11. Nzy Shearing force at joint 1

12. Nz Tractive force in x-direction at joint 2

13. Ny Tractive force in y-direction at joint 2

14. Nzy Shearing force at joint 2

15. Nz Tractive force in x-direction at joint 3

16. Ny Tractive force in y-direction at joint, 3

17. Nz_ Shearing force at joint 3

18. Nz Tractive force in x-direction at joint 4

19. Ny Tractive force in y-direction at joint 4

20. Nxy Shearing force at joint 4

21. Nx Tractive force in x-direction at the center

22. N v Tractive force in y-direction at the center

23. N_y Shearing force at the center

A-76

STRS E43 iset icase (concluded)

24. Mz Bending moment about x-axis at joint 1

25. My Bending moment about y-axis at joint 1

26. M_ v Twisting moment at joint 1

27. Qz Transverse shear in x-direction at joint 1

28. Qv Transverse shear in y-direction at joint 1

29. M_ Bending moment about x-axis at joint 2

30. My Bending moment about y-axis at joint 2
_ .r ._L -J.

..1. mzv Twisting molilent, itt, joint 2

32. Qz Transverse shear in x-direction at joint 2

33. Qv Transverse shear in y-direction at joint 2

34. Mz Bending moment about x-axis at joint 3

35. M_ Bending moment about y-axis at joint 3

36. M_y Twisting moment at joint 3

37. Q_ Transverse shear in x-direction at joint 3

38. Qy TLansverse shear in y-direction at joint 3

39. M_ Bending moment about x-axis at joint 4

40. My Bending moment about y-axis at joint 4

41. Mzv Twisting moment at joint 4

42. Qz Transverse shear in x-direction at joint 4

Ao Q _ shear m j-,_ j

44. Mz Bending moment about x-axis at the center

45. My Bending moment about y-axis at the center

46. Mzv Twisting moment at the center

47. Qz Transverse shear in x-direction at the center

48. Qv Transverse shear in y-direction at the center

Formulae:

Sz : f]j N= + f41 Mz

Sv : f2i Nv + fsj My

T_y :/'33 N_y + f6j Mz

f/j = l/thiekn_s for i and j = 1,2,3

/42 =: fS2 := --/02 -- 6/(thickness) 2 '

f43 : f53 = --los = 6/(thkkness) 2

A-77

STRS E44 iset icase

iset = Load set

icase = Load case within set

Created in processor GSF.

NJ = Number of E44 elements

NI=8

Type = real

The dataset contains NJ nominal records, NI items per record.

Contents of each record:

1. Group number

2. Element number within group

3. Joint #1

4. Joint #2

5. Joint #3

6. Joint #4

7. Element thickness

8. Shear stress

A-78

TEMP Exx iset icase

Exx -- Element name

iset = Load set

icase -- Load case within Load set

Created in processor AUS.

NJ = Number of elements of this type.

Type -- real

For 2-node elements (Not defined for E25 elements):
NI=3

Contents of each entry:

1. Average temperature of the element

2. Transverse gradient in direction 1

3. Transverse gradient in direction 2

For 3-node elements (Not defined for E32 elements):
NI-- 3

Contents cf each entry:

1. Temperature at joint 1 of element

2. Temperature at joint 2 of element

3. Temperature at joint 3 of element

For 4-node elements (Not defined for E42 elements):
NI=4

Contents of each entry:

1. Temperature at joint i of element

2. Temperature at joint 2 of element

3. Temperature at joint 3 of element

4. Temperature at joint 4 of element

Formula:

Total effective -- Element temperature
temperature at node n at node n

4- Nodal temperature from block "icase"
of dataset "NODA TEMP iset"

A-79

TEXT B,TAB 2 I

Created from TEXT card(s) in processor TAB.

Type = alphanumeric

Contains data in text.

VIBR EVAL iset ncon

iset= Load set

ncon = Constraint case

Created in processor EIG.

N J= 1

NI = Number of eigenvalues

Type = real

Contains eigenvalues corresponding to each eigenvector in 'WIBR MODE'*.

VIBR M_DE iset ncon

}set : Load set

ncon= Constraint case

Created in processor EIG.

SYSVEC format. See "APPL FORC iset".

Contents:

Each block of data contains one eigenvector corresponding to an ei_enva|ue stored in _VIBR

EVAL "_. Data is stored for each joint in each active direction.

A-80

ffi

APPENDIX B. Instructions for Installation of the Testbed on VAX/VMS

1) Create top level directory [NICESPAR] on the disk where the software is to be installed;

the total disk space required for installation is 15000 disk blocks.

2) Set the default device to the name of the device used in step 1. Mount the delivery

tape and enter the following commands to unload the tape:

$ ALLOCATE "tape_device_name" TAPE
$ MOUNT/FOREIGN TAPE:

$ BACKUP/LOG TAPE:NICESPAR.BCK/SELECT=[NICESPAR...]

$ DISMOUNT TAPE:

$ DEALLOCATE TAPE:

[NICESPAR...]

3)Make the following system wide logical name definition for the NICESPAR root di-

rectory in the system startup procedure or in user login procedures:

$ DEFINE NSSROOT "dev": [NICESPAR]

where "dev" is the name of the disk that the files reside on.

4) NICl_PAR users must include in their login procedures the following command so

that NICESPAR symbols and logical names are defined for their process:

$ ©NSSROOT:LOGIN.COM

The executable file for NICESPAR created under VMS 4.3 is included on the delivery tape

and can be executed at this time.

NOTE: Steps 1-3 must be performed by a user with privileges to create top level directories

and define system wide logical names.

The directories which are created by the installation process are:

Logical Name

NSSROOT

NSSMSC

NS$SRC

NSSLIS

NS$OBJ

NSSEXE

NS$DEMO

NICE$OLB

NICE$MSC

NICE$EXE

Directory Name

[NICESPAR]

[NICESPAR.MSC]

[NICESPAR.SRC]

[NICESPAR.LIS]

[NICESPAR.0BJ]

[NICESPAR.EXE]

[NICESPAR.DEMO]

[NICESPAR.NICE.OLB]

[NICESPAR.NICE.MSC]

[NICESPAR.NICE.EXE]

Contents

LOGIN.COM, SUBMIT.COM

Master source files and

maintenance procedure files

for NICE/SPAR

Fortran source files

Fortran compiler output

NICE/SPAR object libraries

NICE/SPAR executable and map

Demonstration procedure files

NICE object library

NICE master source files

NICE utility executable files

B-1

If a new executable version of NICE/SPAR must be created from the source version, enter

the following commands:

$ SET DEFAULT NS$MSC

$ ©MAKENS

The procedures MAKENS.COM, MAKESPARPROC.COM, AND LINKNS.COM, which

reside in the directory NS$MSC, are listed below.

MAKENS.COM procedure listing:

$1 makens.com

S!
$! Procedure to extract NICE/SPAR VAX source version from master source

$! files and link the executable version in BSSEXE:NICESPAR.EXE

$_

$ set def nsSmsc:

$ on error then Sgoto end

$ max/for/vax/sic/wc <sparinc.ams >/inc NICE DOUBLE

$ _makesparproc nicespar

$ @makesparproc aus
$ @makec_proc dcu

$ @makesparproc dr

$ @makesparproc e

$ @makesparproc eig

$ @makesparproc eks
$ ©makesparproc eld

$ ©makesparproc enl

$ _makesparproc eqnf

$ @makesparproc gsf

$ _makesparproc imp

$ _makesparproc inv

$ @makesparproc k
$ _makesparproc kg

$ @makesparproc lau

$ ©makesparproc m

$ _makesparproc pama

$ _makesparproc pkma
$ @makesparproc ps

$ @makesparproc plta

$ @makesparproc pltb

$ @makesparproc spargraf

$ @makesparproc prte
$ @makesparproc psf

$ ©makesparproc ssol

$ _makesparproc tab

$ ©makesparproc topo

$ @makesparproc vec

$ @makesparproc vprt

$ @makesparproc csml

$ @makesparproc rseq

$ _makesparproc shel

$ @makesparproc shell

$ @makesparproc tgeo

$ @makesparproc ssta

$ @makesparproc trta

$ @makesparproc trtb

$ @makesparproc trtg

$ @makesparproc tafp

$ @makesparproc mtp

$ @makesparproc view

$ @makesparproc tak

$ ©makesparproc tads

$ @makesparproc thermlibl i

$ @makesparproc thermlib2 !

$ ©makesparproc crutil !

$ @makesparproc gsutil

$ ©makesparproc nsutil !

$ @makesparproc nsparlibl

$ _makesparproc nsparlib2

$ @makesparproc nsparlib3

$ lib/cre ns$obj:nsparlib.olb ns$obj:nsparlibl,nsparlib2,nsparlibS

$ del ns$obj:*.obj;*

$ ©linkns

$ end:

$ exit

! Library of Lockheed shell subroutines

Library of thermal routines

Library of thermal routines

Library of Lockheed corotational routines

Library of Lockheed utility routines

Library of Lockheed utility routines

MAKESPARPROC.COM Procedure Listing:

$ IF PI.EQS."" THEN $INQUIRE PI "Enter processor name"

$ IF PI.EQS."" THEN SEXIT

$ on error then goto end

_checkdate nsSmsc: pl .ams ns$obj:'pi".o!b

$ if done .eq. 0 then Sgoto compile

$ write sys$output pl," is up-to-date"

$ goto end

$ compile:

$! Extract VMS/VAX version of SPAR processor

$ INCLUDE <NSSMSC:'PI'.AMS >NSSMSC:'PI'.IMS

$! set up keys for MAX; include TEK key only if PLOTIOLIB is defined

$ keys = "DOUBLE NICE"

$ if plotlOlib .nes. "" then $ keys = "DOUBLE NICE TEK"

$ MAX/FOR/VAX/WC/UC/SIC/L <nsSmsc:'P1'.IMS >nsSsrc:'p1'.FOR 'keys'
$ DEL NS$MSC:'PI'.IMS;*

$! Compile extracted code and make user library
$ FOR/LIS=NSSLIS:/OBJ=NS$OBJ: NS$SRC:'P1.FOR

$ LIB/CRE NS$OBJ:'PI' NS$OBJ:'PI'

$ del nsSsrc:'pl'.*;_
$ end:

$ put ns$1is:'p1'.¢,ns$obj:'pl'._
$ exit

B-3

LINKNS.COM Procedure Listing:

$! linkns.com - Link NICE/SPAR executable

$ if plotlOlib .nes. "" then $goto link

$ if fisearch("ns$obj:plot10.olb") .eqs.

lib/cre ns$obj:plotlO.olb

$ plotlOlib :== ns$obj:plot10/l

$ link:

$ link/exec=ns$exe:/map=nsiexe: -

nsSobj:nicespar/i/include=(nicespar,comdata). -

aus/l. -

csml/l. -

dcu/l, -

dr/l. -

e/l. -

eig/1. -
eks/l. -

eld/l. -

eqnf/l, -

gsf/l. -

inv/l, -

k/l. -
kg/l, -
m/l, -

plta/l. -

pltb/l, -

psf/l, -

rseq/l. -

ssol/l. -

tab/l. -

topo/l, -

vprt/l, -

ps/l, -

pama/l, -

pkma/l. -

prte/l. -
lau/l.

enl/l, -

vec/l, -

shel/l. -

mtp/l, -
ssta/l. -

tafp/l. -

tgeo/l. -

trta/l, -

trtb/l. -

trtg/l, -
tak/l, -

tads/l, -

view/l. -

nsparlib/l,spargraf/l, - !

thermlib2/l, !

thermlibl/l, i

"" then -

NICE/SPAR libraries

THERMAL lib split (2/87)

THERMAL libraries (added 12/86)

B-4

crutil.olb/l, -

shell.olb/1, -

nsutil.olb/l,Esutil.olb/1 . -

'plotlOlib', -
'nicelib'/l

$pur nsSexe:nicespar.*
$ exit

! Corotational routines

! Lockheed shell routines
! Lockheed utilities

! PLOTIO library

! NICE library

B-5

APPENDIX C. Descriptions of New Testbed Processors

NICE/SPAR processors have been developed by the CSM group to perform functions

required for the analysis of some problems of current interest. Usage descriptions of the

following installed processors are presented in this appendix:

CSM1 - Focus Problem Data Generator

LAU - Laminate Analysis Utility

RSEQ - Joint Elimination Sequence Generation

r, *_*:^._ f,,. ;_+_IIo_ processors F.NI. and VEC is _iven in Reference 9._U_UlIkI_:::_IJL_CL_IUIL ¢UI zzA_sa_

C-I

CSMI - Focus Problem Data Generator

Processor CSM1 is used to model a rectangular, blade-stiffened panel with a single,

centered hole. CSM1 generates nodal coordinates, element connectivities, boundary con-

ditions, and applied displacements in the form of NICE/SPAR procedures written to file

PANEL.PRC (in the user's default directory).

As shown below, the geometry of the panel is defined by parameters A, At, dhole, be,

bs, and h,. The finite element grid is defined by the parameters NELX, NELE, NELBS,

NSPOKES, NRINGS, and NELS.

t---------- m,.u "---_.L
• ! • • ' l_l'l.g

i ii v
IlJ JL

....
Iii t :
[11

|

• ! li • • • • • • 1_'l$

N[,'IIN_ '5 N.5 t-O._ E S

C-2

REQUIRED INPUT:

User input for CSM1 is in the form of two TABLEs formed in AUS. The input

parameters* are defined as follows:

Integer parameters:

NNPE: Number of nodes (joints) per elements (3, 4, or 9)

IOPT: Element option: 0 for E33 or E43 elements

1-7 for experimental element options 1-7

NRINGS: Number of rings of elements (4 or 9 node) around hole
NSPOKES: "" 'l_UIIlDei _ of -- J:--I _--_|._.l"_ul_t _pu_,=_ of -_/ t t O h_l_ h_,,nd_ry

(must be a multiple of 8)

IWALL: Panel section property flag (NSECT for panel skin)

JWALL: Stiffener section property flag (NSECT for panel stiffeners)

IREF: Material reference frame for panel skin

JREF: Material reference frame for panel stiffeners

NELX: Number of elements (4 or 9 node) between 0. < x <
2

NELE: Number of elements (4 or 9 node) from panel edge to outside

stiffener; between 0.0 < y < be

NELBS: Number of elements (4 or 9 node) between interior stiffeners;

betweenb_ <y<[be + 58 - A]

NELS: Number of elements (4 or 9 node) across height of

stiffener; if nels--0, there are no stiffeners

IFILL: Flag to fill in hole: 0-No fill-in, l=Fill-in

Floating point parameters:

A:

AL:

BE:

BS:

DHOLE:

HS:

RAT:

XC,YC,ZC:

Length of a side of the central square region; A > DHOLE

Overall length of panel

Distance between panel edge and outside stiffener

Distance between interior stiffeners

Diameter of hole

Height of stiffener

Mesh grading factor -- near zero gives equal spacing of rings;

as RAT _ 1.0, finer mesh near hole

Local coordinates of center of hole

The eight elements will be generated in groups defined as follows:

GROUP 1 Elements within the A by A square around the hole. Does

NOT include elements formed from filling in the hole.

* If three node elements are to be used, input parameters are those of the comparable

4-node element problem. CSM1 generates the three node element grid by dividing each 4

node element into two three node elements.

C-3

GROUP 2
GROUP 3
GROUP 4
GROUP 5
GROUP 6
GROUP 7
GROUP 8

Portion of center stiffener within A by A square around hole

Panel skin

Stiffener at y = b_

0.0 < x < _ portion of center stiffener2
<_ x _ At portion of center stiffener2

Stiffener at y = be + 2 * bs

Elements formed by filling in hole

If a four-node element mesh is being generated, checks are done within CSM1 to ver-

ify the compatibility of the mesh with a 9-node element mesh. If the mesh is compatible

then execution proceeds as normal with no extra print out. If the mesh is not compatible,

then a warning is printed to file PANEL.PRC giving the name of the offending parameter.

The warning, if it is present, will be the FIRST thing written to PANEL.PRC. Execu-

tion will continue in spite of the warning. In general, if compatible grids are desired,

NELS, NELX, NELE, NELBS, NSPOKES, and NRINGS should be even. If compatible

grids are unimportant, simply ignore the warning as it will be considered a comment by

NICE/SPAR.

A full explanation of user input is best done by example. In the example provided,

all input _'_ is supplied by the user via the procedure MESH_FOCUS, which is called by

procedure MAIN prior to the execution of CSM1. The Focus Problem along with a finite

element model are shown in the following figures:

C-4

ORIGINAL P:_i_. iS

POORQUAU'P/

BLADE-STIFFENED GRAPHITE-EPOXY PANEL

WITH A DISCONTINUOUS STIFFENER

- FOCUS PROBLEM -

• GRAPHITE-EPOXY (T300/5208)

• FLAT PANEL WITH THREE BLADE

STIFFENERS

• 30 IN. LONG

• 11.5 IN. WIDE

• STIFFENER SPACING OF 4.5 IN.

• ST_'_NER HEIGHT OF 1.4 IN.

• 2.0-IN.-DIAMETER HOLE

• 25-PLY PANEL SKIN

• 24-PLY BLADE STIFFENERS

• AXIALLY LOADED WITH LOADED

ENDS CLAMPED AND SIDES FREE

C-5

MESH_FOCUS:

Procedure MESH_FOCUS, listed on the following page, contains the user input re-

quired by CSM1. Two TABLEs have been formed, CSMP FOCS 1 I and CSMP FOCS 1 2.

These two TABLEs must be formed and their contents must be listed in the order shown.

CSMP FOCS 1 1 contains all (and only) integer input data. The first four entries are:

NNPE, IOPT, NRINGS, NSPOKES. The next 20 entries contain boundary conditions.

Unfortunately, the representation of the boundary conditions is the exact opposite of the

usual representation in NICE/SPAR. Here, a

0 - indicates that the d.o.f, is CONSTRAINED TO ZERO

1 - indicates that the d.o.f, is FREE

In addition, the constraints are on the corners and edges of the panel, as indicated

on the following page, and not on specific nodes. The transformation to specific nodes is
made within CSM1.

The displacement is applied at the x = 0.0 edge and as such that edge is given a free

boundary condition by the user. The x-direction displacement along this edge is set to

NONZERO within CSM1 so that the uniform end shortening may be applied.

The remaining entries in this TABLE are: IWALL, JWALL, IREF, JREF, NELX,

NELE, NELBS, NELS, and IFILL.

CSMP FOCS 1 2 contains all (and only) floating point input data. There are only

ten entries in this TABLE: A, DHOLE, XC, YC, ZC, RAT, AL, BE, BS, and HS.

The coordinates (xc, yc, z_) are local coordinates of the center of the hole. They are

Ygtobat = (be + b,) zgtobat - 0.0.measured from the zero: Xglobal : 2 '

The sixth entry in the TABLE, RAT, is a parameter which allows the user to grade

the mesh near the hole. For RAT = 0., element rings will be of equal Size. As RAT =_ 1.,

the mesh becomes finer close to the hole and coarser away from the hole. RAT is only

effective within the A by A square region around the hole.

C°6

*PROCEDURE mesh_focus

[XQT aus

--- build table of integer user data

TABLE(NI=SS.NJ=1.itype=O): CSMP FOCS 1 1
J=l: 4 0 4 16 > .NNPE, IOPT. NRIBGS. NSPOKES

Boundary Conditions:
UVW rUVW

110 000>
111 111>

010 000>

111 111>

110 000>

100 000>

000 000>
010 000>

100 000>

000 000>

.Edge x=O.O

.Edge y=2*(BE*BS)

.Edge x=AL

.Edge y=O.O

.Corner st (0..0.)

.Corner at (O..2*(BE+BS))

.Corner at (AL.2*(BE+BS))

.Corner at (AL.O.)

.Stiffeners at x=O.O

.Stiffeners at x=AL

(Edge i)

(Edge 2)

(Edge 3)

(Edge 4)

IWALL JWALL IREF JREF NELX NELE NELBS NELS IFILL

1 2 1 4 6 2 2 2 0

--- build table of floating point user data

TABLE(NI=IO.NJ=I): CSMP FOCS 1 2

A DHOLE XC YC ZC RAT

J=l: 4.0 2.0 2.0 0.0 0.0 0.25

*END

AL BE BS HS

30.0 1.25 4.5 1.4

C-7

CSMI:

After calling MESH_FOCUS and setting up the required TABLEs, CSM1 may be

executed. Note that there are NO resets available/necessary. The processor writes the file

PANEL.PRC to the user's default directory. Within PANEL.PRC, the following proce-

dures will be found:

a) PANEL_START

b) PANEL_JLOC

c) PANEL_BC

d) PANEL_CONN

e) PANEL_AD

- Start card with correct number of joints

- Joint locations in rectangular coordinates

- Boundary conditions

- Element connectivity (nref,sref,etc. included)

- Applied displacements (on x = O. edge)

All of the problem data then resides in the file PANEL.PRC. In order to use the data,

the command

,ADD PANEL.PRC

must be used. ,ADD redirects input to the named file which is then processed sequentially.

Several .DAT files (one for each procedure contained within PANEL.PRC) are created in

the user's default directory. Once PANEL.PRC has been read and the .DAT files created,

control returns to the procedure, MAIN, where the individual procedures created by CSM1

may then be called. The partial runstream supplied below is an example of the use of CSM1

and its output.

*PROCEDURE main

[XQT tab
start I000

*CALL mesh_focus

[XQT csml
*ADD PANEL. PRC

[XQT gab
*CALL panel_start

jloc
*CALL panel jloc
mate: I 1.0 0.3

con 1

*CALL panel _bc
*CALL matdat
[XQT lau

reset keyl=-I
[XQT eld

*CALL panel_corm
[XQT aus
sysvec : appl moti
*CALL panel_ad

*END

C-8

LAU: A Laminate Analysis Processor for NICE/SPAR

Functions of LAU:

. Form the coefficients for the constitutive relations for the 2-D structure being analyzed.

This processor will calculate the various stiffness matrices for extension [A], bending

[D], bending-extensional coupling [B], and transverse shear [CS]. For elements based

on classical plate theory, a dataset is written to a NICE/SPAR library and named

SA BTAB 2 13. This dataset contains the same data as generated by NICE/SPAR for

"COUPLED" section properties (a total of 43 entries). For elements based on a first-

order transverse shear deformation theory, two datasets are written to a NICE/SPAR

library. One dataset is the previously mentioned SA BTAB 2 13 dataset and the other

dataset is named PROP BTAB 2 101 which contains the elements of the matrices [A],

[B], [D], and [CS] (a total of 40 entries).

. Form the coefficients for the constitutive relations for the 3-D structure being analyzed

assuming an orthotropic 3-D material. A dataset is written to the NICE/SPAR library
and named PROP BTAB 2 21.

3. Calcul_tc detailed through-the-thickness stress distributions using the available stress

resultant data.

4. Evaluate various failure criteria.

NICE/SPAR LAU Input for 2-D Models:

Use the AUS processor to build tables of material data and laminate data. The

following is an example of creating a material properties dataset named OMB DATA 1 1

and four laminate datasets named LAM OMB I l, LAM OMB 2 1, LAM OMB 3 1, and

LAM OMB 4 1 where the first integer in the dataset name corresponds to the value of

NSECT for that laminate.

C-9

[xqt aus

build table of material data

Eli NUI2 E22 GI2 GI3 G23 alphal alpha2 wtden

table(ni=9,nj=4): omb data i I

i=I,2,3,4,5,6,7,8,9

j=1: 19.e÷6 .38 1.89e+6 .93E÷6 .93E+6 .g3e÷6 1.e-4 l.e-4 .01

j=2: 19.e*6 .38 1.89e+6 .93E÷6 .93E÷6 .93e*6 I.e-4 l.e-4 .01

j=3: I.e+7 .3 l.e÷7 3.85e÷6 3.85e+6 3.85e÷6 l.e-4 l.e°4 .I

j=4: 18.e*6 .38 1.89e+6 .93E÷6 .93E÷6 .93e÷6 l.e-4 l.e-4 .01

build laminate data tables

material type, layer thickness, angle in degrees

table(ni=3,nj=25,itype=O): lam omb I I

skin of focus problem (NSECT=I)

i=1.2,3

]=I:

]=2:

]=3:

]=4:

]=5:

]=6:

J=7:

J=8:

5=9:

5=10:

j=11:

5=12:

j=13:

5=14:

j=15:

5=16:

]=17:

5=18:

5=19:

j=20 :

5=21 :

j=22:

]=23:

]=24:

1 ,0055 45.

i .0055 -45.

1 .0055 O.

1 .0055 O.

1 .0055 -45.

1 .0055 45.

1 .0055 O.

1 .0055 O.

1 .0055 O.

1 0055 45.

1 0055 -45.

1 0055 O.

1 0055 O.

1 0055 O.

1 0055 -45.

1 0055 45.

1 0055 O.

1 0055 O.

1 0055 O.

1 0055 45.

1 0055 -45.

1 0055 O.

1 0055 O.

1 .0055 -45.

C-IO

j=25: 1 .0055 45.

table(ni=3,nj=24,itype=O): lam omb 2 I

blade stiffeners of focus problem (NSECT=2)

i=1

j=l

]=2

]=3

]=4

]=5

]=6

]=7

]=8:

j=9:

]=10:

j=11:

j=12:

j=13:

]=14:

]=15:

]=16:

j=17:

j=18:
j=19:

j=20 :

]=21:

]=22 :

]=23 :

J =24 :

,2.3

: 2

: 2

: 2

: 2

: 2

: 2

: 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

.0055 45.0

.0055 -45.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 0.0

.0055 -45.0

.0O55 45.O

table(ni=3,nj=l.itype=O): lam omb 3 1

isotropic check case (NSECT=3)

i=1,2,3

j=l: 3.10.0

table(ni=3,nj=16,itype=O): lam omb 4 1

QUASI-ISOTROPIC MATERIAL (16 PLY SKIN) (NSECT=4)

SHELL WALL (451-4510190/45/-45/0/90)S

C-II

i=1,2,3

j=l:

j=2:

j=S:

j=4: 4

j=5: 4

j=6: 4

j=7: 4

j=8: 4

j=g: 4

j=lO: 4

j=ll: 4

j=12: 4

j=13: 4

j=14: 4

j=15: 4

j=16: 4

4 0.00585 45.0

4 0.00585 -45.0

4 0.00585 0.0

0.00585 90.0

0.00585 45.0

0.00585 -45.0

O.00585 0.0

0.00585 90.0

0.00585 90.0

0.00585 0 0

0.00585 -45 0

0.00585 45 0

0.00585 go 0

0.00585 0 0

0.00585 -45 0

0.00585 45 0

NICE/SPAR LAU Input for 3-D Models:

Use the AUS processor to build tables of material data and laminate data. The

following is an example of creating a material properties dataset named O3D DATA 1 1

and three laminate data.sets named LAM O3I) I l, LAM O3D 2 1, and LAM O3D 3 1

where the first integer in the dataset name corresponds to the value of NSECT for that

laminate.

[xqt aus

build table of material data

E11 E22 E33 G12 G23 G13 NUt2 NU23 NUt3 WTDEN

ALPHA1 ALPHA2 ALPHA3

table(ni=13,nj=3) : o3d data 1 1

j=1:lO.e+6 lO.e+6 15.e+6 3.85e+6 3.85e+6 3.85e*6 .3 .3 .3 .I>

1.e-4 1.e-4 i.e-4

j=2:10.e+6 10.e+6 25.e+6 3.85e+6 3.85e+6 3.85e+6 .3 .3 .3 .I>

I.e-4 1.e-4 1.e-4

j=3:10.e+6 10.e+6 10.e+6 3.846154e÷6 3.846154e+6 3.846154e+6>

.3 .3 .3 .1 1.e-4 1.e-4 1.e-4

build laminate data tables

material type, layer thickness, angle in degrees

table(ni=3,nj=1,itype=O): lam o3d I 1

j=1: 2 0.0055 45.

C-12

table(ni=3.nj=2.itype=0): 1am o3d 2 1

]=i: 1 0.0055 0.

j=2: 1 0.0055 O.

table(ni=3.nj=l.itype=O): tam o3d 3 1

j=l: 3 1.0 0.0

Resets for LAU:

The processor LAU has several resetparameters that can be specifiedon execution.

These reset parameters and theirdefault valuesare given as follows:

NLIB = 1

IDBG = 0

KEY1 --- 1

The reset parameter NLIB is to reset which library to read and write the various

material datasets. The reset parameter IDBG is to turn on additional output for debugging

purposes. The reset parameter KEY1 is to reset the type of constitutive relations to be

used in writing datasets to the library. If KEY1= 1, classical laminated plate theory is

used wherein the effects of transverse shear stiffness is neglected. If KEYI= -1, transverse

shear flexibility effects are included in the analysis provided an experimental element is

used. If KEYI= -2, three dimensional constitutive relations are calculated and written to

the data.set.

C-13

RSEQ - Joint Elimination Sequence Generation

Processor RSEQ supplies a joint elimination sequence by any one of four meth-

ods: Nested Dissection(fill minimizer), Minimum Degree(fill minimizer), Reverse Cuthill-

McKee(profile minimizer), and Gibbs-Poole-Stockmeyer(bandwidth minimizer). The first

three methods, Nested Dissection (N/D), Minimum Degree (M/D), and Reverse Cuthill-

McKee (RCM), were all taken from Reference 10, while the Gibbs-Poole-Stockmeyer (GPS)

algorithm was taken from BANDIT with program documentation supplied in Reference

11.

For large problems, significant savings in CPU times can usually be realized by employ-

ing one of the four joint elimination sequences. However, RSEQ is still in the experimental

stages; while it has been tested (with satisfactory results) for a number of cases, there is

as yet no clear indication of when one method may produce a better elimination sequence

than another. Each of the four methods available work well for some, usually different,

problems. It is recommended that the user make preliminary executions through RSEQ

and TOPO for each of the four methods, checking the values of IC1 and IC2 printed out

by TOPO. The method resulting in the smallest values of IC1 and IC2 presents the best

renumbering scheme (of the four available) for the particular problem.

IC1, a cost index provided as output by TOPO, is a measure of the cost of execution of

INV in terms of the number of operations required to factor the stiffness matrix; IC2, also

output by TOPO, is a measure of the cost of execution of SSOL. Results for three different

test problems have been included in the tables below. Table 1 lists the values of IC1 and

IC2 and times spent (in CPU seconds) in INV and SSOL for the renumbering schemes

and for the original numbering of the CSM Focus Problem 1. The original numbering is

a result of executing processor CSM1 to generate the model of a blade stiffened flat panel

(no hole present). While this original numbering was rather simple to generate, it was an

extremely poor numbering from a bandwidth standpoint. Tables 2 and 3 provide a relative

comparison of IC1 among the various methods for a square and a cube respectively.

Table 1: CSM Focus Problem- Blade Stiffened Panel (391 joints)

Method IC1 INV time:l: IC2 SSOL time:[:

N/D

M/D
RCM

GPS

None

82515

48737

173388

175074

357932

212.0

121.7

450.5

448.5

881.9

6549

5134

10537

10662

15125

:times in CPU seconds

10.2

8.5

12.3

12.3

14.4

C-14

Table 2: 20 by 20 Square Mesh

Method IC1 IC2

N/D

M/D
RCM

GPS

None

58462

66041

150785

150785

94469

6100

6229

10147

10147

8380

Method

N/D

M/D
RCM

GPS

None

ICI

300947

415403

725649

1220235

468375

IC2

12985

14449

20497

26137

17101

Data Space itequirements:

In general, the Gibbs-Poole-Stockmeyer method requires the greatest amount of work-

ing space. The Reverse Cuthill-McKee and Nested Dissection methods each have the same

minumum space requirement. Checks are made within RSEQ to ensure that there is

enough working space available. If there is not enough room to form either the adjacency

arrays or the new numbering, execution wii! _top and a message will be printed to the

output file. The message will contain both the space required and the space available. The

following table lists the exact requirements of each of the methods.

Method

Nested Dissection

Minimum Degree

Reverse Cuthiil-Mckee

Gibbs-Poole-Stockmeyer

_)ace Required
12+3J

$! + 7J

l_÷3J

12+9J+2

where

12 = (Number of element types) + (Record Length) + 17 + 2(J + 1) ÷ J * M

J = Number of Joints

M = Maximum Connectivity

There may be problems, especially with very large models, in getting the new joint

sequence through TOPO because of the space requirements of TOPO. It may be necessary

to adjust the TOPO resets MAXSUB and LRAMAP upward. In some cases it may be

impossible to run the new elimination sequence as the new connectivity exceeds the limit of

the data space available (this seems to be true mainly with the Minimum Degree Method).

C-15

RSEQ creates the dataset JSEQ.BTAB.2.17 which may also be created manually in

processor TAB with a JSEQ input list. There are several resets available which provide

the user with information used and generated by RSEQ.

Available Resets:

BLIB. Library containing Element Definitions and the destination Library for the

JSEQ.BTAB.2.17 dataset. Default value is 1 (and generally should be left at 1) although

BLIB may be set to any integer between 1 and 20.

MAXCON. Maximum number of joints connected to any one joint. Default value

is 8 which is the correct value for MAXCON for a regular, two dimensional, n by n square

grid using four noded quadrilateral elements. For an n by n by n cube, using eight noded

hexahedral elements, MAXCON would be 26.

MAXCON has been deliberately set small to conserve data space. While it must be

set to at least the maximum connectivity of any one joint, it may be larger than this

maximum. The result of resetting this parameter larger than necessary is that space will

be allocated but not used. For most reasonably sized problems this will not cause any

difficulties. However, for particularly large problems, this may result in allocating more

space than is available.

If MAXCON is reset to a value smaller than is needed, execution will stop and the

user will be asked to reset to a larger value. The output file will also contain the number

of the joint at which MAXCON was first exceeded.

METHOD. Method of determining joint elimination sequence; Default is 0 - Nested

Dissection. The four methods are:

0 - Nested Dissection

1 - Minimum Degree
2 - Reverse Cuthill-McKee

3 - Gibbs-Poole-Stockmeyer

The first two methods are fill minimizers; Reverse Cuthill-McKee is an envelope (or

profile) minimizer and Gibbs-Poole-Stockmeyer is a bandwidth minimizer.

LRT. Record length set to default of 896. This reset will generally not require any

changes.

LADPRT. Sets a flag for print out of adjacency information; Default value is 0 - no

output of these arrays. If LADPRT is set, to anything other than zero the full adjacency

array, providing the full connectivity, in ascending order, for each node, will be printed

out in the user's output file.

LJSP:RT. Sets a flag for print out of the final joint elimination sequence; Default

value is 0 - no print out of the joint elimination sequence. If LJSPRT is set to anything

other than zero then the joint elimination sequence in both elimination and joint order

will be printed to the user's output file.

C-16

Summary of Available Resets:

Reset Default

BLIB O1

MAXCON 8

METHOD 0

LR7 896

LADPRT 0

LJSPRT 0

Description and Permissible Values

Library containing element definitions and

Destination Library for JSEQ.BTAB.2.17 dataset

Maximum number of joints connected to any one joint

Method of determining elimination sequence:

0 - Nested Dissection (Default)

1 - Minimum Degree
2 -- Reverse Cuthill-McKee

3 - Gibbs-Poole-Stockmeyer

Record Length

Example of RSEQ Usage:

0 - No print out of adjacency arrays to output file

1 - Print adjacency arrays to output file

0 - No print out of joint elimination sequence to output file

1 -- Print out joint elimination sequence to output file

The example runstream included below generates a 4 by 4 square grid. The elimination

sequence will be determined by the Gibbs-Poole-Stockmeyer Method and will be printed

to the output file.

*procedure SQUARE
*def nn = 4

*def nn2= <<nn> * <nn>>

*def nel= <<nn>-i>

[xqt TAB
start <nn2_

matc
i i. 0.1

jloc
1 0. 0. O. 1. O.
<nn> O. 1. 0. 1.

sa

1 0.1

[xqt ELD
e43
nsect=l
nmat=l

1 2 < <nn>+2 > < <nn>+l >

[xqt RSEQ
reset METHOD=3. LJSPRT=I, LADPRT= 1

[xqt DCU
toc 1

[xqt TOPO
*end

*call SQUARE

[xqt EXIT

0. <nn> 1 <nn>
1. 0.

1 <nel> <nel>

C-17

Example of RSEQ Output

The followingwas taken directlyfrom the log fileof the Example Runstream. The

adjacency array isprinted as a consequence of settingLADPRT toone while the elimination

sequence isprinted as a resultof setting LJSPRT to one.

EXIT ELD CPUTIME=

<DM> CLOSE. Ldi:
MET}{= 3

LJSP= I

LADP= 1

** BEGIN RSEq **
<DM> OPEN, Ldi:

<DM> OPEN, Ldi:

ADJACENCY ARRAY :

JOINT i :
JOINT 2 :

JOINT 3 :

JOINT 4 :

JOINT 5 :

JOINT 6 :
JOINT v

JOINT 8 :
JOINT 9 :

JOINT 10 :

JOINT II :

JOINT 12 :

JOINT 13 :
JOINT 14 :

JOINT 15 :

JOINT 16 :

ELIMINATION ORDER =

JOINT ORDER =

JOINT ORDER =
ELIMINATION ORDER =

<DM> CLOSE, Ldi:

<DM> CLOSE, Ldi:

EXIT RSEQ CPUTIME=
*_ BEGIN TOPO **

<DM> OPEN, Ldi:
<DM> OPEN, Ldi:

1.5 I/O(DIR,BUF)= 130

1, File: SQUARE.L01

DATA SPACE = 200000 WORDS

1, File: SQUARE.L01, Attr:

25, File: NS.L25 , Attr:

2 5 6
1 3 5
2 4 6
3 7 8
1 2 6
1 2 3
2 3 4
3 4 7
5 6 10
5 6 7
6 7 8
7 8 11
9 10 14
9 10 11
I0 11 12

11 12 15

1 2 3 4 5
1 2 5 6 3

I 2 3 4 5

1 2 5 I0 3

6 7
7 8

2

OLD, Block I/O

SCRATCH. Block I/0

9 i0

5 7 9 10 11

6 8 I0 11 12

11 12
13 14

9 11 13 14 15

I0 12 14 15 16
15 16

13 15
14 16

6 7 8 9 I0
7 9 10 11 4

6 7 8 9 10
4 6 11 7 8

25, File: NS.L25

1. File: SQUARE.L01

1.4 I/O(DIR.BUF)=
DATA SPACE= 200000 WORDS

25, File: NS.L25 . Attr:

26. File: NS.L26 , Attr:

11 12 13 14 15 16
8 12 13 14 15 16

11 12 13 14 15 16
9 12 13 14 15 16

49 13

SCRATCH. Block I/O
SCRATCH. Block I/O

NO. OF 4-NODE ELEMENTS= 9
TOTAL NO. OF ELEMENTS= 9

MAXCON, MAXSUB. ILMAX= 281 39340 280
NSUBS,KSIZE,NR5,LR5= 58 20

MAXCON, MAXSUB, ILMAX= 280 39340 280
SIZE INDEX= 36, IC1, IC2= 315

<DM> CLOSE, Ldi: 25, File: NS.L25

<DM> CLOSE. Ldi: 26. File: NS.L26

EXIT TOPO CPUTIME= 2.3 I/O(DIR.BUF)=

1 896

87, NR4= 1

75 7

C-18

APPENDIX D. Modifications to SPAR Reference Manual

For NICE/SPAR Usage

THE SECTION NUMBERS BELOW REFER TO THE SECTIONS IN REFER-

ENCE 4 TO WHICH THE MODIFICATIONS APPLY.

2.2 The Data Complex

By default, the file names corresponding to NICE/SPAR libraries are formed by ap-

pending the extension Lxx to a root file name ("NS" currently) where xx is the library

number (i.e., NS.L01 for library 1).

The table of contents (TOC) is maintained by the NICE data manager in a differ-

ent format than the SPAR TOC. The NICE/SPAR TOC items displayed by DCU are:

sequence no., date, time, lock code, no. of records, name of creating processor, dataset

name. Other items in the SPAR TOC which are required by the processors (dataset length,

record length, no. of columns per block and data type) are obtained in NICE/SPAR via

GAL record level utilities.

2.3 Card !_.,_pllt Rules

The same input rules are followed except:

1) Real data input may contain "E" at the beginning of the exponent field as in
FORTRAN.

_) The + _h +....

2.5 Dataset Structure

The SPAR dataset structure is followed except:

1) NWORDS is always an integral multiple of NI*NJ.

2) In most cases, one SPAR block corresponds to a single NICE record. However,
in some data.sets a SPAR block corresponds to a NICE record group, where an

individual NICE record corresponds to a segment of the SPAR block.

2.5.1 Table

Tables can be of any SPAR data type; tables with ITYPE = + 1 may not contain

mixed data, but ITYPE = 0 tables may contain values of integer, real or alphanumeric

type.

D-1

3.1.4 Alternate Reference Frames (ALTREF}

Material referenceframes may also be defined fortwo-dimensional elements (seeELD

SREF pointer below).

The followingframes are generated automatically in TAB:

1) Global frame; xau coincident with xgtobat

2) Xal t coincident with Yglobal

3) Xalt coincident with Zglobal

While the global frame is always frame 1, frames 2 and 3 may be overwritten by the

analyst. A message warning that a predefined reference frame is being overwritten will be

written to output and execution will continue.

3.1.9 E21 Section Properties

Ten classes of cross section are allowed; the class RECT has been added. The required

input record for RECT is:

RECT k, bl, tl

where bl is the dimension on the 2-axis and tl is the dimension on the 1-axis of the member

reference frame.

3.2 ELD

3.2.1.2 Element Reference Frames

Change the second sentence of the first paragraph to read:

All element-related input and output (section properties, stresses, etc.) is relative to these

frames unless SREF has been set to something other than zero.

3.2.2.2 Area Elements (E31, E32, E33, E41, E42, E43, E44)

Add to Table Pointer:

SREF 0 SREF defines the stress reference frame for the element. By

default this reference frame is coincident with the element

frame. The element constitutive properties are assumed to

be in this frame. Stresses may be calculated in this and in

the element reference frame. For SREF= n, reference frame

n must have been defined via TAB/ALTREF.

D-2

Add to the bottom of the page:

Note that the mesh generators may also be used for defining networks of experimental
4-noded elements.

3.4 EKS

Add at the end of the first paragraph (Function): If required (by SREF set in ELD), EKS

will perform the transformations on the element flexibility matrix.

Add to RESET Controls:

BLIB 1

ZK2D .0001

GIPT 2

Library containing element definitions, joint

locations, etc.

Size of zero test parameter for two-dimensional
elements.

Number of integration points used for solid elements;

may be set to 2, 3, or 4.

4.1 TOPO

Under RESET Controls, add to LRAMAP meaning:

If necessary (due to problem size) TOPO will adjust the block length to a maximum size

of 4032 words. If this is still not large enough, then execution will terminate with a fatal

error. This reset should then be set to at least 4032 before again trying to run the problem.

Also, add to the MAXSUB meaning:

MAXSUB = (ilmax)*{ilmax+l). When MAXSUB is reset, ILMAX is automatically re-
calculated.

4.2 K - The Stiffness Matrix Assembler

Under RESET controls, the default for SPDP is 2, so double precision output is
obtained because of the smaller word size on VAX.

Add to RESET Controls:

NAME K First word of output dataset name (e.g. default is

K.SPAR, the unconstrained system stiffness matrix).

The elemental arrays used in the assembly must be

located in segment 5 of the EFIL dataset.

D-3

5.1 AUS

Table 5-1 Summary of AUS Subprocessors

Add the followingto the listof General Arithmetic subprocessors:

LTOG

GTOL

ARAN

DRAN

MXTY

MTRA

MXV

Table 5.1.2-1 Summary of General Arithmetic Operators

Add the following:

Command Forms

Z = ±_-" _N(X)

Meaning

Z = Rank of X in ascending order

Z = DRAN(X)

Z = MXTY(X,Y)

Z = MTRA(X)

Z = MXV(X,Y)

Z = Rank of X in descending order

Z = X Y where X and Y are multi-block datasets

blocked by columns

Z = X where X is a multi-block dataset blocked

by columns

Z = X Y where X is a multi-block dataset blocked

by columns and Y is a single block of a dataset

5.I.2.9 LTOG and GTOL

Delete the last paragraph in the section. The paragraph begins: These commands

may not be used if any joint motion components were excluded . . .

5.1.2:10 ARAN and DRAN

The form of the commands are:

Z = ARAN(X)

Z = DRAN(X)

The source dataset must be a single-block dataset of either integer or real data type.

The output dataset will be a single-block dataset of integer type whose elements are the

ranks (ascending or descending) of the corresponding elements of the source dataset.

D-4

5.1.2.11MXTY, MTRA, and MXV

The source datasets must be real data type and may be multi-block. They are in-

terpreted as rectangular matrices where each block is one column of the matrix. The

destination dataset will be written one column per block.

Z = MXTY(X,Y) indicates Z = X Y

Z = MTRA(X) indicates Z = X

Z = MXV(X,Y) indicates Z = X Y

For MXTY and MXV, X and Y must be conformable for multiplication. For MXV,

Y must be a single block of a dataset which may contain multiple blocks.

5.1.3.1 TABLE

The command line is:

TABLE,U(NI = ni, NJ = nj, ITYPE = n): N1 N2 n3 n4: data...

whc:c *he optional parameter ITYPE has been added, being the SPAR data type
code of the dataset

The footnote should read:

* Loop-limit format is permitted for ITYPE = 0 or =h 1.

It is not permitted for ITYPE = 4.

5.2 DCU - The Data Complex Utility Program

The following commands are not implemented in the current version of NICE/SPAR:

XCOPY, XLOAD, REWIND, TWRITE, TREAD, NTAPE, STORE, RETRIEVE

Section 8. EIG - Sparse Matrix Eigensolver

Instead of using the Cholesky-Householder method for solving the low-order eigen-

problem, the combination shift QZ algorithm described in Reference 12 is used.

D-5

10.2PLTB

PLTB is used to produce graphical displays on Tektronix 4014 compatible terminals.

The following RESET controls are provided:

Default

Name Value Meaning

TERM TEK

BAUD 96O0

OUT 6

Terminal type

Use TEK for Tektronix 4014;

Use VT for DEC VT240

Communications baud rate

Unit no. for graphics output;

Set to integer >6 for writing to disk file

D-6

APPENDIX E. NICE/SPAR Processor/CLIP-GAL Interface

Subroutine Descriptions

Subroutine DAL (NU, IOP, KA, KORE, IEA, KADR, IERR, NWDS, NE, LB, ITYPE,

NAME1, NAME2, NAME3, NAME4)

Purpose: Read or write a nominal dataset named NAME1.NAME2.NAME3.NAME4 in

library NU (for single record datasets only).

Parameters:

_TTT

IOP

KA

KORE

IEA

KADR

IERR

NWDS

NE

LB

aol 1 1" z" 4._
HUIIID_Yuorary Un_eg_r, input)

operation code (integer, input)

= -1, Rename current dataset; set KADR to dataset sequence

number

= 0, Set up an entry in TOC for new dataset; disable old

datasets of same name; set KADR to dataset sequence

number

= 1, Same as 0 but also write one record of data from KA.

= 2, Same as 1 but does not disable old datasets.

= 10, Get TOC information without reading data; set IERR if

not found.

= 11, Same as 10 but also read one record (LB items) of data.

into KA.

initial address of array containing data to be read or

written; actual data type depends on ITYPE.
[: , e ;, _.._,_-_,+;,._,-, ,,,,,_n,,,_t [_-_r roa_q c, poration)

number of words available for dataset (integer, input)

If LB > KORE and IOP > 9, IERR set to 2. If KORE = 0,

the check for space is skipped.

error condition check code (integer, input)

= 1, Print message and return if error encountered.

== 2, Disregard error.

other, Print message and abort.

Dataset sequence number, := 0 if not found. (integer, output)

error code on return (integer, output)

= 0, No error

= -1, dataset not found

= -2, Insufficient space for dataset

number of items in dataset (integer, input for write,

output for read)

number of columns per block (integer, input for write, output for read)

record size(items) (integer, input for write, output for read)

E-1

ITYPE

NAME1
NAME2
NAME3
NAME4

SPAR data type code (integer, input for write, output for read)

= 0 integer data

: _ 1 real data

: ± 2 double precision data

= 4 alphanumeric data

1st component of dataset name, 4 bytes (alphanumeric, input)

2nd component of dataset name, 4 bytes (alphanumeric, input)

3rd component of dataset name (integer, input)

4th component of dataset name (integer, input)

(any component of the dataset name may be 4HMASK which is a

"wildcard" matching parameter)

Functional description:

1. Library NU is checked to be open; if not, it is opened as a GAL82 library on disk file

NS.Lxx, where xx is the library number.

2. For writing, the name is entered in TOC via GMPUNT. KADR is set to the dataset

sequence number of the new dataset. If IOP = I, one record of LB words of the

approvriate type are written via GMPUTN or GMPUTC.

3. For reading, the dataset sequence number is located and the matched dataset name

components are returned in common block /TOCLIN/. The dataset length, record

length, rowsize, and data type are returned in /TOCLIN/ and in the argument list.

If IOP = 11, the available space (KORE) is checked and one record of data is read
via GMGETN or GMGETC.

4. For IOP = -1, the current dataset is renamed. No other parameters can be changed

at this time in NICE/SPAR.

E-2

Subroutine FIN (NERR, NER)

Purpose: Terminate NICE/SPAR processor.

Parameters:

NERR

NER

Error code (integer, input)

0 , no error

0 , 4-byte alphanumeric error code to be printed (A4)

error number to be printed if NERR -- 0 (I10 format)

(integer s input)

Functional description:

1. Close libraries 1-20 and 27-30 conditionally; close libraries 21-26 unconditionally.

2. Print execution statistics (CPU, clock time, buffered I/O, direct I/O).

3. Print error messages according to input parameters.

4. Chain to NICE/SPAR executive via CLPUT.

E-3

Subroutine INTRO (IDPROC)

Purpose: Log processor name with data manager and get unit

assignment for printed output file.

Parameter:

IDPROC - Processor name, in upper case (input, character*4)

Function description:

1. Call GMSIGN to enter processor name to be "signed" into datasets created by the

processor.

2. Call ICLUNT to get the unit number assigned to the print file and assign this valve

to the second integer variable in common block /IANDO/. This variable is used

by NICE/SPAR processors for normal output.

E-4

Function LTOC (NU, J, NAME1, NAME2, NAME3, NAME4)

Purpose: To get item from TOC

Parameters:

NU

J

NAME1

NAME2

NAME3
"l%T A _,,r_ A
l'W ,_"lk.I v i ,,11,_"_

library number (integer, input}

TOC item number desired, 1-12 (integer, input)

1st component of dataset name, 4 bytes (alphanumeric, input)

2nd component of dataset name, 4 bytes (alphanumeric, input}

3rd component of dataset name (integer, input}

4th component ,_r el_t_=at n_mp (intt_rer. input)

Functional description:

1. Find dataset in NICE TOC via LMFIND.

2. Get TOC information via GMGENT, GMGETN, and LMRECS.

3. Set function value to the value of the desired item.

The TOC items are:

1

2-4

5

6

7

8

9

10

11

12

1)ataset sequence number

Unused

Number of words in dataset.

Number of columns per block (for matrix type data}

Record size

SPAR data type code

!st component of dataset name

2nd component of dataset name

3rd component of dataset name

4th component of dataset name

E-5

Subroutine NSNEXT (NXTPRC)

Purpose: To store the parsed items of the next command to be picked up by the main

program. This routine is furnished for processors which don't use READER

to parse input and which have read (ahead) a command to execute another

processor.

Parameters:

NXTPRC Name of the next processor to be executed (character, input)

Functional description:

1. If NXTPRC is non-blank, set the values in common block/INREC/* so that the main

program will execute the processor named by NXTPRC immediately. Values are set

as follows: NAME= "STOP" , IDATA(1)="IXQT', IDAWA(2)=first 4 characters of

NXTPRC, KIND(I)=4, KIND(2)=4, NDW=2.

2. If NXTPRC is a blank string, set the values in common block/INREC/so that the

main program will read a new command. Values are set as follows: NAME= "STOP" ,

IDATA(1)--0, KIND(I)=4, NDW=O.

* See READER for a description of the common block /INREC/.

E-6

Subroutine READ (IA, LCL, IEOF)

Purpose: Get one unparsed user input record from NICE.

Parameters:

IA

LCL

IEOF

input record contents, array of LCL words, one character of

input per word (integer, output}

input, number of words in array IA

end of input flag (integer, output}

= 0, successful input operation

I, IIU ll;._JUb UUb¢:LIII_U

Functional description:

1. Initialize IA to blank.

2. Call CLGET to get an input record using the 4 character prompt string from common

block /PID/. All macro expansions in the record have been performed by CLGET

prior to return.

3. Store ;._.,tividual characters from input record into IA, one character per word, left

justified.

E-7

Subroutine READER

Purpose: Get one line of user input and parse it according to the SPAR command input

syntax. Input data items are stored in common block/INREC/.

Functional description:

1. Call READ to get user input record via CLGET.

2. Parse the input according to the SPAR input syntax specified in reference 4, with

modifications described in Appendix D. Up to 40 items per record are allowed.

3. Return data items in common block /INREC/described below.

4. If first item is "FIN", call subroutine FIN to terminate the processor.

5. If the first item is "RUN" or "[XQT", set NAME to "STOP". NICE/SPAR processors

use this value of NAME as the end-of-input flag.

Common block

IDATA(40)

KIND(40)

NAME

NDW

NA41

NA42

/INREC/contents:

Parsed input data items; actual data stored in IDATA

may be of integer, real, or alphanumeric type.

Integer SPAR data types of corresponding words in IDATA.

Alphanumeric command key; set to IDATA(1) if

KIND(I) - 4 (alphanumeric); set to "STOP" if

IDATA(1) = "RUN " or "[XQT"; otherwise -- 0.

Number of words in the IDATA array.

Integer index in IDATA where alphanumeric label begins,

if a label is included in this record.

Integer index in [DATA where alphanumeric label ends.

E-8

Subroutine RIO (NU, IWR, IOP, IDSN, KSHFT, KSHFT2, KA, L, ITYPE, NE)

Purpose: Read or write named records to NICE nominal dataset.

Parameters:

NU

IWR

IOP

IDSN

KSHFT

KSHFTz

KA

L

ITYPE

NE

Library number (integer, input)

Operation code (integer, input)

-- 1, Write records KSHFT:KSHFT2

= 2, Read records KSHFT:KSHFT2

= 10, Write records KSHFT:KSHFT2 and return next record
.... L__ :_ _.._ut_,n
lllUlll[.Jq_:::l III JL.k) IJL.IL' J. ,

= 20, Read records KSHFT:KSHFT2 and return next record
number in KSHFT.

record location code (integer, input)

= 1 or 2, Read or write records KSHFT:KSHFT2

-- 3, Append records to end of dataset

dat_et sequence number (integer, input)
initial record number to be accessed

(integer, input always, output if IWR>9)

final record number to be accessed (integer, input)

initial address of array of data

(data type depends on ITYPE input for write operation,

output, for read operation)

number of data items to be read or written (integer, input)

SPAR data type code (integer, input)

number of columns per block (integer_ input for write,

dummy argument for read)

Functional description:

1. Get NICE data type code from ITYPE. Construct NICE record name.

2. For IOP = 1 or 2, ifIWR:_l or 10, write records via GMPUTN or GMPUTC; ifIWR

= 2 or 20, read record via GMGETN or GMGETC. For IOP = 3, get number of

records written on dataset; construct record name DATA.nrec+I:nrec+(KSHFT2-

KSHFT); write records via GMPUTN or GMPUTC.

3. For IWR > 9, return next record number in KSHFT.

E-9

Subroutine TOCO (NU, NAME, IOP, NLINE)

Purpose: Find dat_et and return TOC information

Parameters:

NU

NAME

IOP

NLINE

Library number (integer, input)

4 word array, dataset name (alphanumeric and integer, input)

operation code (integer, input)

= 1, find first matching dataset

1, disable all matching datasets after entry NLINE

dataset sequence number to start search at (integer, input,

output if IOP = 1)

Functional description:

1. Find all matching datasets via GMATCH; if no matches found, set NLINE = -1

and return.

2. For IOP = 1, set NLINE = seq. no. of first matching dataset after input NLINE.

Get TOC information via GMGENT, GMGETN, LMRECS. Return TOC infor-

mation in common block /TOCLIN/.

3. For IOP _ 1, disable matching datasets after NLINE. Set NLINE to the number

of disabled datasets.

E-IO

APPENDIX F. Guidelines for Installing User Elements

The contents of this appendix are extracted from the SPAR Stuctural Analysis System Ref-

erence Manual, Vol. 4, by C. E. Jones and W. D. Whetstone, (Ref. 4) with modifications

for NICE/SPAR usage.

TERMINOLOGY:

For each element, an "Element Reference Frame" is defined using the same convention

$41 $61 and SSl: that is, the x axis isas for standard SPAR element types E31, E,tl, , ,

directed from node i through node '2_ aml !)ode 3 !ios h! the first: quadrant of the x-y plane.

The following symbols will I)e used in explaining how to employ the experimental element

capability:

Na!n.e l)im e_ns__i.9__0

T Y P E

MAJOR

MINOR

N

M

NDF

NNDF

De fi.nitjon

A 4-('haracter all)hanumeric word assigned by the

user to identify a particular element formulation,

analogous to the standard element type codes

(E21, 1!],13,$81, etc.). A model may consist of any

of the standard element types, plus one or more

types of exl)erimental elements. There is no specific

limit on the nund)er of types of experimental elements.

Elenleld,S are classified as:

MAJOR ! fnr line element,s, e.g..E2!, F22.

MA.i()R "2 for 21) elements, e.g. E31, E43.

MAJOR 3 for 31) elements, e.g. $81, F41.

(Experimental elements must use MAJOR. > 3)

An integer assigned by the user to identify a specific

element type. A unique "MINOR' is defned for each

"ty pe'.

The number of nodes per element (minimum = 3,

maximum 32). Experimental beam elements should

be mo(telled as 3-node elements, using the third point

to eslal)lish the (:ross-section orientation.

N(N _ 1)/2. See K, CM, K(; below.

Number of degrees of freedom per node, either 3

(3 displacements), or 6 (3 displacements and

3 rotations).

The total number of degrees of freedom per element,

N times NDF. See U and F below.

F-1

Name Dimension Definition

X

U

F

P

N4PROP

Q

Y

(3,N)

(NNDF)

(NNDF)

!NP)

(NS)

(NQ)

(N)

Relative to the element reference frame, the direction

i position coordinate of element node j is X (i,j).

Element nodal motion vector. Where Dij and Rij are

direction i displacement and rotation components

(relative to the element reference frame) of element

node j, the order of terms in U is as follows, if ndf=6:

Dll D21 D31 Rll R21 R31 D12 D22 D32 R12 - -

If NDF = 3, the order is the same, except the rotation

terms are not present.

None of the user-written subroutines access either U or F,

defined below. U and F are defined here only for use in

defining other arrays which must be generated in

user-written routines.

Element nodal force vector, corresponding to U.

Element property array. The content of P is established

by the user. Typical items are material and section

properties, option controllers, etc. Before executing

ELD, the user must create, via AUS/TABLE, a table

named XXXX BTAB 2 N4PROP, where N4PROP is any

integer greater than 100. Each line in this table is a

P array, applicable individual elements, as established

via the NSECT to one or more pointer in ELD.

The element "stress" state vector. The content of S is

established by the user. Typical terms in S are stress

field coefficients, strains, stress resultants, etc.

See the definition of Q, R, and D below.

The element "thermal" load vector. The content of Q

is established by the user. Typical components of Q

are coefficients of temperature or dislocation functions,

temperature gradients, etc., defined in any manner the
user finds convenient. See the definition of the C and

D matrices below. The Q vectors for individual elements

are constructed via AUS/ELDATA. The NODAL

TEMPerature and NODAL PRESsure arrays, if present,

do not apply to experimental elements.

Element nodal weight distribution. The weight of an

element = Y(1) + Y(2) +--- Y(n). Processor m uses

Y in constructing the system diagonal mass matrix, DEM.

F-2

Name

K

C

R

D

CM

KG

T(3,3)

SPDP

SREF

Dimension

(NDF,NDF,M)

(NNDF,NQ)

(NS,NNDF)

(NS,NQ)

(NDF,NDF,M)

(NDF,NDF,M)

Definition

The element stiffness matrix, arrayed as submatrices,

each dimensioned NDF by NDF:

K(-,-,1) K(-,-,2) K(-,-,4)]

K(-, -, 3) K(-, -, 5)
K(-,-,6)

Symmetric
K(-,-, M)

Thermal force influence matrix. Total element nodal

forces are:

F=KU+CQ

Mechanical stress recovery matrix.

Thermal stress recovery matrix. The total stress, as

computed by GSF, is:

S=RU+DQ

Element consistent mass matrix, arrayed the same as K.

Element initial-stress stiffness matrix, arrayed

the same as K.

Transformation matrix for element-to-global
coordinate transformation.

An integer _,_,_ ;F,,;n,, ¢h,_ • • ,,r the_".... ., ""b preclslon v,

element stiffness matrix (user input in ELD)

1 = single, 2 = double

An integer code specifying the element stress

reference frame (user input in ELD)

0 = material x-axis and element x-axis coincide

1 = material x-axis and global x-axis coincide

2 = material y-axis and global x-axis coincide

3 = material z-axis and global x-axis coincide

F-3

USER WRITTEN SUBROUTINES:

To implement experimental elements, the user must code the following routines and in-

corporate them into the indicated processors, replacing empty routines having the same

names in the standard version of SPAR. It is permissible to omit DMEXPE, CMEXPE,

and KGEXPE.

Routine

Processor Name Argument List

Inputs: Outputs:

E DMEXPE(MAJOR,MINOR,N,NDF,P,X, Y)

EKS KEXPE(MAJOR,MINOR,N,NDF,P,X,T,SREF, K,R,C,D)

M CMEXPE(MAJOR,MINOR,N,NDF,P,X, CM)

KG KGEXPE(MAJOR,MINOR,N,NDF,P,X,S, KG)

The primary limitation on the experimental element capability is the total length of an

element information packet in the E-state, which is initiated in processor E. The component

parts are:

Part Len tLh Contents

1 12+N

2 0

3 18 + 27N X, T, other element transformation data

4 NP P

5 M x NDF x NDF x SPDP K

6 NS x NNDF R

7 NS S

8 NNDF x NQ C

9 NS x NQ D

The related limitations are:

- The sum of the lengths of parts 1 through 4 may not exceed 1000.

- All processors accessing the E-state (e.g., K, M, KG, EQNF, GSF)

require sufficient central memory to load at least one complete element

information packet, in addition to the other c.m. requirements, as

defined in the SPAR Reference Manual.

- In E, the entire XXXX BTAB 2 N4PROP array must be in central memory.

Although the experimental element capability has been structured such that there are few

size restrictions, users should be aware that extremely large element information packets

will generally result in relatively high I/O costs.

F-4

PROGRAM EXECUTION:

Executions proceedthe sameas in a standard analysis,except that beforeexecuting ELD,
the usermust execute AUS/TABLE to construct, for eachtype of experimental element,
a table namedXXXX BTAB 2 N4PROP. The identifying integer, N4PROP, may be any
number greater than 100. Each line in this table is a P array, as previously defined,
containing the material and sectionconstantsapplicable to oneor moreelements.

It is also mandatory that a MATERIAL CONSTANT dataset be generated in TAB, even

though the experimental elements do not reference MATC. This is required because proces-

sor E automatically loads MATC, and retains it in central memory throughout execution.

Experimental elements are defined in ELD as illustrated below. Within the same ELD

execution, other element types, either standard or experimental, may also be defined.

[XQT ELD
#

Define all elements of a given type:
#

EXPE TYPE, MAJOR, MINOR, N, NDF, NS, NQ. N4PROP, SPDP

SREF=i
NSECT=k # Line K of XXXX BTAB 2 N4PROP is ''P'' for

elements defined subsequently.

jl j2 - - jn# First element connects joints jl j2 - -jn.

jl j2 - - jn# Second element

NSECT=j # Line j of XXXX BTAB 2 N4PROP is ''P''

subsequently.

j l j2 - - in#
jl j2 - - jn#

for elements defined

NSECT is the only table pointer command applicable to experimental elements. The

MOD, INC, and GROUP commands flmction the same as for the standard elements. The

standard mesh generation facilities may be used for experimental elements having the same

nodal arrangement as standard elements.

The SREF command applies to experimental elements to designate the stress reference

frame for subsequently defined elements. The default value assumed for SREF is zero;

the current established value stays in effect until superseded by another SREF command.

Upon conclusion of execution of the EXPE subprocessor, the SREF value reverts to the

default value of zero.

F-5

If thermal loading is present, an ELDATA-format dataset named TEMP type iset icase

must be created via AUS/ELDATA before EQNF is executed:

[XQT AUS
ELDATA: TEMP type iset icase
G=I

effil: Q1 Q2 - - Qnq# Q(nq items) for element I. group i.

e=2: Q1 Q2 - - Qnq# Q(nq items) for element 2. group i.

The functions performed by SPAR processors in support of experimental elements are

summarized below. None of the other SPAR processors (e.g. the plot programs) recognize

experimental elements.

Processor Function

ELD

TOPO

E

EKS

K

M

KG

AUS

EQNF

GSF

Processes element definitions, and creates DEF, GD, GTIT,

and DIR datasets.

Accounts for presence of experimental elements in

constructing the topological arrays, KMAP, AMAP, enabling

system matrix assembly and factoring to be performed.

Creates the E-state datasets for experimental elements,

in skeletal form. Adds contribution of experimental

element weights to DEM.

Inserts the K, R, C, and D arrays into the E-state.

Includes experimental element K's in system K.

Includes experimental element CM's in system CEM.

Includes experimental element KG's in system KG.

Permits loading of TEMP type datasets via ELDATA.

Adds contribution of experimental element fixed-joint

forces to equivalent nodal force arrays.

Computes S for each element, including thermal effects,

present. S is embedded in the E-state, for use by KG,

if requested via the EMBED reset control. S is not

printed by GSF unless ONLINE=2. STRS Type datasets are

not produced by GSF for experimental elements. PSF does

not recognize experimental elements.

F-6

Refexen_ces

1. Felippa, Carlos A.: Architecture of a Distributed Analysis Network for Computational

Mechanics. Computers and Structures, vol. 13, 1981, pp. 405-413.

2. Felippa, Carlos A.: A Command Language for Applied Mechanics Processors, vols.

1-3. LMSC-D 78511, November 1983.

3. Felippa, Carlos A.: The Global Database Manager EZ-GA L. LMSC-D766995, Novem-

ber 1982.

4. Whetstone, W. D.: SPAR Structural Analysis System Reference Manual, vols. 1-4.

NASA CR i58970-i, December i-'.)78.

5. Whetstone, W. D.: Compui, er Analysis of l,arge Linear Frames. ,I. Struct. Div.,

ASCE, vol. 95, no. STI 1, Proc. Paper 6897, November 1969, pp. 2401-2417.

6. Marlowe, M. B.; Moore, R. A.; and Whetstone, W. I).: SPAR Thermal Analysis

Processors Reference Manual, System Level 16. NASA CR 159162, October 1979.

7. Plan, T. H. It.: l)erivation of Eh, ment Stiffness Matrices by Assumed Stress Distri-

butions. AIAA J., vol. 2, 1333-1336, 1964.

8. (hmningnarn, Sally: SPAR Data Set (/ontents. NASA TM 83181, October 1981.

9. G. M. Stanley, el, al: Preliminary Development of a "l_stbed for Computational Struc-

tural Mechanics, Part I. 1,MS(_-1)067201, .June 1986.

10. George, Alan and W-H Liu, Joseph: Computer Solution of Large Sparse Positive

Definite Systems. Prentice-ttall, Inc., Englcwood ('lifts, N.I, 1981.

11. Everstine, G. C: 7"he Bandit Computer Program for the Reduction of Matrix Bandwidth

for NASTRAN. NSRI)C l{cport 3872, March 1972.

12. Ward, R. C.: An Eztension of the QZ Algorithm for Solvin.q Generalized Matriz Eigen-

value Problems. NASA TNI)-7305, .luly 1973.

R-i

Report Documentation Page

1. Report No. i 2. Government Accession No.
NASA TM-89096 I

4. Title and Subtitle

Introduction to the Computational Structural Mechanics Testbed

7. Author(s)

C.G.Lotts; W.H.Greene; S.L.McCleary; N.F.Knight, Jr.;

S.S.Panison; and R.E.Gillian

9. Performing Organisation Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. Recipient's Catalog No.

5. Report Date

September 1987

6. Performing Organisation Code

8. Performing Organisation Report No.

10. Work Unit No.

505-63-11-07

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

C.G.Lotts, S.L.McCleary, S.S.Paulson: PRC/Kentron, Inc.
16. Abstract

The CSM Testbed software system based on the SPAR finite element code and the NICE system

is described. T_is software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto

Research Laboratory and contains data management utilities, a command language interpreter, and

a command language definition for integrating engineering computational modules. SPAR is a system of
programs used for finite element structural analysis developed for NASA by Lockheed and Engineering

Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, and

utility functions which communicate through a common database. The work on NICE/SPAR was
motivated by requirements for a highly modular and flexible structural analysis system to use as a

tool in carrying out research in computational methods and exploring new computer hardware. Analysis
examples are presented which demonstrate the benefits gained from a combination of the NICE command

language with a SPAR computational modules.

17. Key Words (Suggested by Authors(s))
Structural analysis software

Finite element analysis
Finite element software

Thermal analysis software

19. Security ClamlL(of this report)
Unclassified

18. Distribution Statement
UnclassifiednUnlimited

Subject Category 39

[20. Security Clsssif.(of thispage)unclassified 121" N°" °f Pages[22"Pricel7 3 A08

NASA FORM 1626 oct ss

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

