297 research outputs found
Dynamics of concurrent and sequential Central European and Scandinavian heatwaves
In both 2003 and 2018 a heatwave in Scandinavia in July was followed by a heatwave in Central Europe in August. Whereas the transition occurred abruptly in 2003, it was gradual in 2018 with a 12-day period of concurrent heatwaves in both regions. This study contrasts these two events in the context of a heatwave climatology to elucidate the dynamics of both concurrent and sequential heatwaves. Central European and, in particular, concurrent heatwaves are climatologically associated with weak pressure gradient (WPG) events over Central Europe, which indicate the absence of synoptic activity over this region. One synoptic pattern associated with such events is Scandinavian blocking. This pattern is at the same time conducive to heatwaves in Scandinavia, thereby providing a mechanism by which Scandinavian and Central European heatwaves can co-occur. Further, the association of WPG events with Scandinavian blocking constitutes a mechanism that allows heatwaves to grow beyond the perimeter of the synoptic system from which they emanated. A trajectory analysis of the source regions of the low-level air incorporated in the heatwaves indicates rapidly changing air mass sources throughout the heatwaves in both regions, but no recycling of heat from one heatwave to the other. This finding is line with a composite analysis indicating that transitions between Scandinavian and Central European heatwaves are merely a random coincidence of heatwave onset and decay
Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour
Putative global minima of sodium clusters with up to 380 atoms have been
located for two model interatomic potentials. Structures based upon the Mackay
icosahedra predominate for both potentials, and the magic numbers for the
Murrell-Mottram model show excellent agreement with the sizes at which maxima
in the latent heat and entropy change at melting have been found in experiment.Comment: 4 pages, 2 figure
Millennial changes in North American wildfire and soil activity over the last glacial cycle
Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard-Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires
Code of conduct for scientific integrity
The scientific landscape has changed considerably since the Swiss Academies of Arts and Sciences published Integrity in scientific research: Principles and procedures in 2008. Consequently, an expert group was set up with members from the Swiss Academies of Arts and Sciences, the Swiss National Science Foundation, swissuniversities, and Innosuisse to review the changes that have taken place in recent years and to draw up this Code of conduct for scientific integrity. This Code is aimed at everyone involved in the generation, dissemination, and advancement of knowledge within the Swiss higher education system. This includes scientists, institutions, and funding organisations. Institutions and funding organisations have a special role to play in creating and maintaining the conditions in which scientific integrity can thrive. Scientific integrity is based on the observance of fundamental principles and their many different contextual concretisations. These principles guide scien- tists in their research and teaching and help them to deal with the practical, ethical, and intellectual challenges they can expect to encounter. The aim of this code of conduct is to promote appropriate attitudes and to help build a robust culture of scientific integrity that will stand the test of time. Ethical scientific behaviour rests on the basic principles of reliability, honesty, respect, and accountability and supports the concretisations of these basic principles within a specific frame of reference. This Code is intended to be a dynamic document. Its aim is to strengthen scientific integrity in all avenues of research and education, with a particular emphasis on the training and development of young people. Another of its aims is to establish a culture of research integrity in the scientific community, with the Code providing a welcome framework rather than imposing its own set of rules. It promotes common understanding and parity of treatment in dealing with violations of scientific integrity within and between institutions. The Code also considers current developments in the fields of Open Science and social media, and it examines the issue of time limitation from several points of view. In addition, it offers practical recommendations on how to set up an organisation for the protection of scientific integrity and describes the processes involved
Surface reconstruction induced geometries of Si clusters
We discuss a generalization of the surface reconstruction arguments for the
structure of intermediate size Si clusters, which leads to model geometries for
the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61
(two isomers). The common feature in all these models is a structure that
closely resembles the most stable reconstruction of Si surfaces, surrounding a
core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and
the electronic structure of these models through first-principles density
functional theory calculations. These models may be useful in understanding
experimental results on the reactivity of Si clusters and their shape as
inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys.
Rev.
Density-functional-based predictions of Raman and IR spectra for small Si clusters
We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems
Magic Numbers of Silicon Clusters
A structural model for intermediate sized silicon clusters is proposed that
is able to generate unique structures without any dangling bonds. This
structural model consists of bulk-like core of five atoms surrounded by
fullerene-like surface. Reconstruction of the ideal fullerene geometry results
in the formation of crown atoms surrounded by -bonded dimer pairs. This
model yields unique structures for \Si{33}, \Si{39}, and \Si{45} clusters
without any dangling bonds and hence explains why these clusters are least
reactive towards chemisorption of ammonia, methanol, ethylene, and water. This
model is also consistent with the experimental finding that silicon clusters
undergo a transition from prolate to spherical shapes at \Si{27}. Finally,
reagent specific chemisorption reactivities observed experimentally is
explained based on the electronic structures of the reagents.Comment: 4 pages + 3 figures (postscript files after \end{document}
Thermal expansion in small metal clusters and its impact on the electric polarizability
The thermal expansion coefficients of clusters with and , and
are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics.
Thermal expansion of small metal clusters is considerably larger than that in
the bulk and size-dependent. We demonstrate that the average static electric
dipole polarizability of Na clusters depends linearly on the mean interatomic
distance and only to a minor extent on the detailed ionic configuration when
the overall shape of the electron density is enforced by electronic shell
effects. The polarizability is thus a sensitive indicator for thermal
expansion. We show that taking this effect into account brings theoretical and
experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical
Review Letters. References 10 and 23 update
Towards an effective potential for the monomer, dimer, hexamer, solid and liquid forms of hydrogen fluoride
We present an attempt to build up a new two-body effective potential for
hydrogen fluoride, fitted to theoretical and experimental data relevant not
only to the gas and liquid phases, but also to the crystal. The model is simple
enough to be used in Molecular Dynamics and Monte Carlo simulations. The
potential consists of: a) an intra-molecular contribution, allowing for
variations of the molecular length, plus b) an inter-molecular part, with three
charged sites on each monomer and a Buckingham "exp-6" interaction between
fluorines. The model is able to reproduce a significant number of observables
on the monomer, dimer, hexamer, solid and liquid forms of HF. The shortcomings
of the model are pointed out and possible improvements are finally discussed.Comment: LaTeX, 24 pages, 2 figures. For related papers see also
http://www.chim.unifi.it:8080/~valle
Electronic entropy, shell structure, and size-evolutionary patterns of metal clusters
We show that electronic-entropy effects in the size-evolutionary patterns of
relatively small (as small as 20 atoms), simple-metal clusters become prominent
already at moderate temperatures. Detailed agreement between our
finite-temperature-shell-correction-method calculations and experimental
results is obtained for certain temperatures. This agreement includes a
size-dependent smearing out of fine-structure features, accompanied by a
measurable reduction of the heights of the steps marking major-shell and
subshell closings, thus allowing for a quantitative analysis of cluster
temperatures.Comment: Latex/Revtex, 4 pages with 3 Postscript figure
- …