145 research outputs found

    Comparison of Magnetic Fields from a New Satellite Magnetic Model of the Lithosphere with Magnetic Fields Predicted from Crust 1.0

    Get PDF
    Both magnetic and seismic techniques can provide information about the Moho (Mohorovicic discontinuity). We develop a new technique that provides a better estimate of the magnetic thickness of the crust, as compared with previous approaches. It uses prior knowledge from seismology (Crust 1.0), a new high-degree model from CHAMP (CHAllenging Mini-satellite Payload) and Swarm (LCS-1 - a model of Earth's lithospheric field) and a newly developed technique. The technique is appropriate for regions where induced magnetization dominates over remanent magnetization. We compare the predictions from LCS-1 with those from Crust 1.0, with some simple assumptions, and find that the correlations increase until about spherical harmonic degree 30, and then decrease globally. Spatially, the correlations between the seismic and magnetic techniques are strongest over North America and Australia, and weakest over South America and northern Africa. Strong correlations also exist between the two approaches over the Antarctic, northern Europe, and Greenland. While we might expect the seismic and magnetic approaches to correlate over well-characterized regions (i.e. North America), and show weaker correlations over poorly-characterized regions (i.e. South America and north Africa), the strong correlation in the Antarctic and Greenland is puzzling, because both of these regions are poorly-characterized. We discuss some possible explanations, and implications, of this attempt to correlate seismic and magnetic approaches to characterizing the lithosphere

    Magnetization of the Lunar Crust

    Get PDF
    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location

    Исследование парогазовой установки, работающей на генераторном газе

    Get PDF
    Выпускная квалификационная работа 116 страниц, 25 рисунков, 25 таблиц, 35 источников, 2 приложения. Ключевые слова: газификация угля, парогазовая установка, газотурбинная установка, генераторный газ, анализ, котел-утилизатор, показатели эффективности. Объектом исследования является ПГУ, работающая на генераторном газе. Цель работы – анализ работоспособности такой ПГУ с ГТУ, работающей на генераторном газе. В процессе исследования проводилось изучение различных способов газификации угля; производился выбор расчетной схемы ПГУ с газификацией; проводился расчет состава и характеристик генераторного газа и определение основных показателей тепловой эффективности ПГУ. В результате исследования был сделан анализ эффективности работы парогазовой установки.Final qualifying work of 116 pages, 25 figures, 25 tables, 35 sources, 2 annexes. Keywords: coal gasification combined cycle plant, a gas turbine plant, the product gas analysis, waste heat boiler, performance indicators. The object of this study is to CCGT running on syngas. The purpose of work - performance analysis of a CCGT with a gas turbine, operating on syngas. The study was carried out to study different methods of coal gasification; selects the estimated PSU circuit with gasification; conducted calculation and composition of the product gas characteristics and the definition of the main indicators of the thermal efficiency of the CCGT. The survey was made the analysis of the efficiency of the combined-cycle plant

    Mercury's Magnetopause and Bow Shock from MESSENGER Magnetometer Observations

    Get PDF
    We have established the average shape and location of Mercury's magnetopause and bow shock from orbital observations by the MESSENGER Magnetometer. We fit empirical models to midpoints of boundary crossings and probability density maps of the magnetopause and bow shock positions. The magnetopause was fit by a surface for which the position R from the planetary dipole varies as [1 + cos(theta)]-alpha, where theta is the angle between R and the dipole-Sun line, the subsolar standoff distance Rss is 1.45 RM (where RM is Mercury's radius), and the flaring parameter alpha = 0.5. The average magnetopause shape and location were determined under a mean solar wind ram pressure PRam of 14.3 nPa. The best fit bow shock shape established under an average Alfvén Mach number (MA) of 6.6 is described by a hyperboloid having Rss = 1.96 RM and an eccentricity of 1.02. These boundaries move as PRam and MA vary, but their shapes remain unchanged. The magnetopause Rss varies from 1.55 to 1.35 RM for PRam in the range of 8.8-21.6 nPa. The bow shock Rss varies from 2.29 to 1.89 RM for MA in the range of 4.12-11.8. The boundaries are well approximated by figures of revolution. Additional quantifiable effects of the interplanetary magnetic field are masked by the large dynamic variability of these boundaries. The magnetotail surface is nearly cylindrical, with a radius of ~2.7 RM at a distance of 3 RM downstream of Mercury. By comparison, Earth's magnetotail flaring continues until a downstream distance of ~10 Rss

    Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95264/1/grl28621-sup-0002-txts01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/95264/2/grl28621.pd
    corecore