1,178 research outputs found

    Use of Green's functions in the numerical solution of two-point boundary value problems Final report, 1 Apr. 1970 - 31 Mar. 1971

    Get PDF
    Green function in solving linear and nonlinear second order ordinary differential equations including examples in finding rendezvous and periodic orbits of restricted three body syste

    The application of a numerical integration procedure developed by erwin fehlberg to the restricted problem of three bodies

    Get PDF
    Application of numerical integration procedures to restricted three-body proble

    Presenting in Virtual Worlds: Towards an Architecture for a 3D Presenter explaining 2D-Presented Information

    Get PDF
    Entertainment, education and training are changing because of multi-party interaction technology. In the past we have seen the introduction of embodied agents and robots that take the role of a museum guide, a news presenter, a teacher, a receptionist, or someone who is trying to sell you insurances, houses or tickets. In all these cases the embodied agent needs to explain and describe. In this paper we contribute the design of a 3D virtual presenter that uses different output channels to present and explain. Speech and animation (posture, pointing and involuntary movements) are among these channels. The behavior is scripted and synchronized with the display of a 2D presentation with associated text and regions that can be pointed at (sheets, drawings, and paintings). In this paper the emphasis is on the interaction between 3D presenter and the 2D presentation

    Potential Use of MALDI-ToF Mass Spectrometry for Rapid Detection of Antifungal Resistance in the Human Pathogen Candida glabrata.

    Get PDF
    The echinocandins are relatively new antifungal drugs that represent, together with the older azoles, the recommended and/or preferred agents to treat candidaemia and other forms of invasive candidiasis in human patients. If "time is of the essence" to reduce the mortality for these infections, the administration of appropriate antifungal therapy could be accelerated by the timely reporting of laboratory test results. In this study, we attempted to validate a MALDI-ToF mass spectrometry-based assay for the antifungal susceptibility testing (AFST) of the potentially multidrug-resistant pathogen Candida glabrata against anidulafungin and fluconazole. The practical applicability of the assay, reported here as MS-AFST, was assessed with a panel of clinical isolates that were selected to represent phenotypically and genotypically/molecularly susceptible or resistant strains. The data show the potential of our assay for rapid detection of antifungal resistance, although the MS-AFST assay performed at 3 h of the in vitro antifungal exposure failed to detect C. glabrata isolates with echinocandin resistance-associated FKS2 mutations. However, cell growth kinetics in the presence of anidulafungin revealed important cues about the in vitro fitness of C. glabrata isolates, which may lead to genotypic or phenotypic antifungal testing in clinical practice

    Composite Polarons in Ferromagnetic Narrow-band Metallic Manganese Oxides

    Full text link
    A new mechanism is proposed to explain the colossal magnetoresistance and related phenomena. Moving electrons accompanied by Jahn-Teller phonon and spin-wave clouds may form composite polarons in ferromagnetic narrow-band manganites. The ground-state and finite-temperature properties of such composite polarons are studied in the present paper. By using a variational method, it is shown that the energy of the system at zero temperature decreases with the formation of composite polaron; the energy spectrum and effective mass of the composite polaron at finite temperature is found to be strongly renormalized by the temperature and the magnetic field. It is suggested that the composite polaron contribute significantly to the transport and the thermodynamic properties in ferromagnetic narrow-band metallic manganese oxides.Comment: Latex, no figur

    AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    Get PDF
    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ∼420  nm∼420  nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber

    Hybrid gain-flattened and reduced power excursion scheme for distributed Raman amplification

    Get PDF
    We propose and evaluate through extensive numerical modelling a novel distributed hybrid amplification scheme combining first and second-order Raman pumping which gives reduced signal power excursion over a wide spatial-spectral range of 60 km × 80 nm in C + L-bands

    Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies

    Full text link
    The surface and electronic structure of MOCVD-grown layers of Ga(0.92)In(0.08)N have been investigated by means of photoemission. An additional feature at the valence band edge, which can be ascribed to the presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface was prepared by argon ion sputtering and annealing. Stability of chemical composition of the investigated surface subjected to similar ion etching was proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure

    Microscopic modelling of doped manganites

    Full text link
    Colossal magneto-resistance manganites are characterised by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting to conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low energy physics. Focussing on short range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on Orbital Physic
    corecore