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ABSTRACT

This study investigates the use of Green's functions in the numerical
solution of the two-point boundary value problem. The first part deals
with the role of the Green's function in solving both linear and nonlinear
second order ordinary differential equations with boundary conditions and
systems of such equations. The second part describes procedures for
numerical construction of Green's functions and considers briefly the
conditions for their existence. Finally, there is a description of some
numerical experiments using nonlinear problems for which the known existence,
uniqueness or convergence theorems do not apply. Examples here include
some problems in finding rendezvous and periodic orbits of the restricted

three body system.
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I. INTRODUCTION

This report is devoted to the investigation of the use of Green's
functions for the numerical solution of second order ordinary differeniial
equations with boundary conditions.

If L, represents a second order differential operator, say
_d d
LE —E}ZP(X)C].X + r(x),

then the solution to the linear equation

u =L f = -Gf,
where this last equation represents

b

u@) = -[ 6&,y)E(y)dy.
a

The function G is called the Green's function and plays the role of the
inverse of the operator =-L,. The function G is not unique, but depends on
the boundary conditions. The existence of G needs also to be investigated
in each individual case and depends on the character of p, v and the boundary
conditions.

Historically, the first and still most common method of solving second
order differential equations with boundary conditions (the two poink

boundary value problem) is the shooting method. That is, one starts at one




end and assumes enough information about the function and its derivative

at that end to be able to integrate the differential equation as an initial
value problem. By repeatedly integrating to the other end and correcting
the assumed initial conditions, one hunts for a solution that satisfies

the boundary conditions at the other end. While this method works well

for some problems, for others it does not. It has a tendency to fail badly
when the solution is extremely sensitive to the assumed initial conditions.

The Green's function method can be useful either in place of the shooting
method or as an adjunct or preliminary step to the use of the shooting method.
That is, the Green's function method might be used to obtain an initial
estimate for the shooting method.

Another useful technique is to introduce a discrete approximation for
the operator IL,. The function G then is the inverse of the matrix approxi-
mating -L,. Low order approximations to L, cause no special trouble except
that large matrices result if high accuracy is desired. High order
approximations for L, tend to introduce extraneous solutions and must be
treated with care. (Varga and co-workers [3-7] have given new high order
methods for the nonlinear two point boundary value problem.)

The Green's function method, on the other hand, can be of an arbitrarily
high order, depending only on the order and quality of the methods available
for the integration of differential equations (the initial value problem).

The first part (Chapter II) of this paper is concerned with the
definition and use of the Green's function. Both single equations and
systems of equations are discussed. Applications to nonlinear problems
where iterative techniques are needed, are discussed. Here, problems of

existence, uniqueness and convergence or stability of the solutions arise.




Chapter III describes procedures for generating Green's functions
numerically. Some discussion concerning the question of existence of G is
included here. A table of Green's functions in analytic form for some of
the simpler forms of L, is also given.

Chapter IV deals with specific numerical experiments in the use of
Green's functions for solving second order nonlinear ordinary differential
equations, and systems of such equations, with various boundary conditions.
Several types of problems were chosen. The first type was single simple
nonlinear equations where multiple solutions were known to exist and problems
in stability occur.

The other class of problems investigated is associated with the search
for orbits in the restricted three body system. Here one deals with a pair
of rather complicated nonlinear equations. Two types of orbits were sought.
The first are rendezvous type orbits, that is, point to point in a fixed
time. Multiple solutions can exist in this case and some solutions are
more stable than others.

A second type of problem for the restricted three body system is that
of periodic orbits. Searches for these orbits were also carried out., The
difficulty that arises here is that solutions of this type appear to be
densely packed. That is, for this problem there is in every neighborhood
of a solution another solution. While some of these solutions are
especially stable, efforts at finding periodic orbits by the Green's func~

tion method were not in general as successful as had been hoped.




II. USE OF GREEN'S FUNCTIONS

A. Single Equations

Consider a single second order linear ordinary differential equation

of the form

j%p(x)é% + rx)lux) = £(x), (1)

with boundary conditions
u(a) = u() = 0.

This will also be written as

A
i
o
w
-

Provided that sufficient restrictions are placed on p, r, and £, this esgua-

tion can be solved for u as
u=L1'f = -Gf, (2)
where the above is a shorthand notation for

b

ux) = -[ GGx,y)E(y)dy. @9
a

The function G(x,y) is known as the Green's function for the operator

é%p(x)é% + r{x) and boundary conditions u(a) = u(b) = 0. The restrictions

on p and r sufficient for the existence of G will be discussed later. The

function -G plays the role of the inverse of the operator L,. The function G




must satisfy the condition

LG = -8,

meaning
4oL b re) e@,y) = ~6&-y) 3)
B g + 1) 66D = -aeoy), k

where §(x~y) is the Dirac delta. The function G also satisfies the boundary

conditions

G(anY) = G(b3Y) =0

FasiaieN
ey
p—

for all y, a <y < b. We note that while G itself is a function of two
variables, L,G is not a function, but is a distribution.

There are straightforward methods for constructing G that will be dis~
cussed later (Chapter III). We point out here that the inverse of L,
is mot unique, but depends on the boundary conditions; different boundary
conditions give different Green's functions.

Consider now that the function f is also a (nonlinear) function of u

and its derivatives; i.e., let

Lou = £(u,u'), 5

or
d d i ey
TP+ T u@) = £@uE),u’ @), 5"

d . . .
where uv'(x) = E;u(x). In this case, one can still construct an inverse or

Green's function for L,, but the function u(x) is exhibited as the solution




of a (nonlinear) integral equation:

b
u@®) = -] 6&,EF,u@),u’ (¥))dy, (6)
a
or
u = -Gf(u,u'). (6"

Still, in numerical work this integral equation can be useful in solving
for u by 1iteration. Some theory exists for the existence, uniqueness and
convergence of integral equations such as (6). Even when existence, unique-
ness or convergence theorems are not available, solutions to equation (6)

can sometimes be obtained by iteration of

b
n+l n n .
u (X) = "I G(X>Y)f(}73u (Y)au' (Y))dy: <Z}
a
also written as
n+l n _,n PR
u = =Gf(u ,u' ). (7%

There are two kinds of convergence theorems of interest for equation (7},
that will be referred to as local and global convergence.

A global convergence theorem states the circumstances under which, for
any initial uo, iteration of equation (7) converges to a solution of equa-
tion (6).

A local convergence theorem states the circumstances under which there
exists a neighborhood of the solution, such that if u® is chosen to lie in

this neighborhood, iteration of (7) converges to u, a solution of (6).




Global convergence is much stronger than local convergence, Local
convergence requires that the initial trial solution u® lie close to the
true solution before convergence can be guaranteed.

Bailey, Shampine and Waltman [1] examine in considerable detail the

convergence properties of the iterative scheme:

b

e = - e et @),u o)) dy,
a

. . d°
where G is the Green's function for the operator ) and zero boundary con-

ditions. Contraction mapping techniques are used to obtain convergence
conditions on f. The same techniques can be used to establish similar

results for other Green's functions provided that the quantities

b
max f[G(x,y)[dy,
as<x=sb a

and

b d
max jW'EgG(x,y)ldy,
asxs<b a

can be established or bounded. The theorems of Bailey, Shampine and Waliman
are of the global type; that is, they give the conditions on f such that

- . o
convergence is obtained for any initial u .

There are also some local stability conditions of interest, Local

stability implies the existence of a finite neighborhood about a solution u

such that if u  lies in this neighborhood the iteration scheme converges

to the solution.




With local convergence theorems, uniqueness of the solution is not
required. For example, it can happen that there are many solutions and
that in the neighborhood of some solution there is a convergence region
for that particular solution, but other solutions have no regions of con-
vergence,

For example, consider the differential equation

dz
E;gu(x) = =-sin u(x)

with boundary conditions
u(a) = u(b) = 0.

The equivalent integral equation is

b
u(x) = [ G(x,y)sin u(y)dy,
a
a@
where G is the Green's function for Fe) with the zero boundary conditions
at a and b, Iteration gives
n+l b n
u (x) = f G(x,y)sin u (y)dy.
a

The methods of Bailey, Shampine and Waltman can be used to show that this
iteration scheme can be guaranteed to converge if
b

b" 2
maxflG(x,y)ldy ={—} < 1,
X a m




Under these circumstances the solution is unique (u(x) = 0), and global
convergence to this solution is guaranteed.

. b-a\*® . .
However, if - > 1 then there are multiple solutions. Furthermore,

the iteration scheme is then unstable in the neighborhood of the soclution

u(x) = 0 but may be stable in the neighborhood of some of the other sclutions.

B. Multiple Equations

For systems of second order linear differential equations much

the same sort of results can be obtained. Consider the system

d d ,
= —p., X)— +r. &) x) = £.(x), j = 1,2..n.
l<k<m dx " jk dx ik Y ]

oo
on

R

with boundary conditions
uk(a) = uk(b) =0, k=1,2..n.

This will also be written as

Again provided that sufficient restrictions are placed on p and v, an inverse

for L, will exist so that

where this stands for

b

= - G . £.(y)dy, k = 1,2..0.
w @ =-[ = 5 CHYIES (D ay n
airsjsn

(16

o,
N




The Green's function, G, is now an n-by-n matrix of functions, and satisfies

the system of equations

d d
—P.,. ()7 + r, |G (x,y) = -§. §(x-y), (10)
1<k<\9% _]k( dx jk km( y) jm (x-y) R

and the boundary conditions
ka(a,y) = ka(b,y) =0, kym=1,2...n.

Again there are straightforward but more involved methods for constructing G.
These methods will be described in Chapter III.

If the vector f is also a function of vector u and its derivatives, that

is
Lou = f(u,u'), (1D
or
o 4 (x)iL + 1, Xy, ®) = fE,ux),u'®)),] = 1,2..n
5 . - H E 3 Ty s e dly
l<k<n dx "k dx ik k
(11")
d H dul dUe N
(here u represents the set u,uy...u, an‘ u' represents Tt KRR

then the Green's function for L, does not give a solution for u but gives

the integral equation

u = ~Gf(u,u’), (12
or
b
w G = -] 2. GyEE,ul)u (¢)dy,k = 1,2, .n.
alsksn 3 (1213
A é

10




. . . . . . . . n
Again this equation can be used in numerical work by iterating with u  on

the right side and obtaining un+1 on the left., Most of the existence,
uniqueness, and convergence theorems can be extended to cover the vector
case,

One interesting case that occurs in connection with the vectors case
is when p and r of equation (11') are both diagonal. Then G is also
diagonal and is much easier to find than if there is ccupling between the

equations in L,. Then

o,
-
13
o

b
uk(X) = —»raGkk(X’Y)fk(y’u(Y)’u' (Y))dY3k = 1:2"’1’1:»

and all of the coupling between the equations occurs in the functions £ only.
Because of the simplicity of (13) compared to (12') and the ease in finding
G when it is diagonal as opposed to when it is not diagonal, it is often
desirable even when dealing with linear equations to remove the coupling

from I, and put it in £, and iterate equation (13) with a diagonal Green's

function. That is, suppose one has an equation of the form
L,u = f, (14)

where u and £ are vectors, (f does not depend on u or u') and L, is a non~

Diag N Off Jiag

D
diagonal matrix operator. Split L, so that L, = L L , Where L

Off . .
contains the diagonal terms of L, and L contains the off diagonal fterms.
Then

i S (15)

11




and

_ _‘GD:Lag(f _ LOffu),

ot
o

P
p

Dia . .
where G~ °8 now is the diagonal Green's function for the operator for

LDlag. Iteration of (16) may be easier and faster than finding the non-

diagonal Green's function of the original operator 1,.

12




III. CONSTRUCTION OF GREEN'S FUNCTIONS (NUMERICAL)

A. Single Fquations

Here we will consider how to construct, or calculate numerically, the

Green's function for the differential operator

It

L,

£,
ot
P’

d d
HP®g T rE))
with boundary conditions
G(a,y) = G(b,y) = 0, as<y<hb.

The Green's function can be constructed from the solutions of the equatior

P
)
R

Lo + 1)) = 0,

or

together with the appropriate boundary conditions on g.

Introducing the definition
T = pE)EE)
X_pxdxg 9

equation (2) can be written as the pair of coupled ordinary differential

equations,

1l

g'(x) = Jx)/p&),

3)

1l

J'(x) = ~-r(x)gx),

(prime indicating derivative with respect to x). There are two families cf

13




solutions of interest for this system of equations; one family satisfies the
boundary condition g(a) = 0; the other satisfies the condition g(b) = 0.

The solution satisfying g(a) = 0 will be designated ga(x), and to make this

solution unique, the condition Ja(a) = p(a)g;(a) 1 will be appended to this

solution. Likewise the solution satisfying g(b) = 0 will be designated

ii

8b(x)a and the condition J (b) = p(b)gé(b) = 1 will be appended to the solution,

This gives the two sets of simultaneous equations and boundary conditiocns:

g'a(x) = Ja(X)/P(X),

3 @) = ~r)e, (), %)
g (@) =0, J (a) = 1,

and
g (x) = J (x)/px),
&) = ~rx)g (=), (5)
g, () =0, 3 (®) = 1.

Now provided that sufficient restrictions are placed on p and v, each
set of equations and boundary conditions has a solution. From the theory of
ordinary differential equations, bothexistence and uniqueness of thess solu~
tions can be guaranteed. Furthermore, there are straightforward numerical

methods, such as Euler's method, or Adams', or Runge-Kutta methods [28] that

"1

can be used to generate these solutions in tabular form on the interval [a,b].

14




The solutions ga(x) and gb(x) are of course also solutions to
equation (2), and it is straightforward to show that any pair of soclutions

of (2) satisfies the Wronskian condition,
3,608, () - I, (g, () = A,

where A is a constant. From the boundary conditions chosen here for

equations (4) and (5)

A=g (a) = -g (. (6

It can now be shown that the Green's function can be constructed from the

solutions ga(x) and gb(x) as follows:

g, (x)g (v), x =y,

P
£ J
ot

G(x,y) = A™S
ga<y)gb(x) , ¥ < X.

To show this we mote that the conditions on the G(x,y) are:

<—£;p(X)£{- + r(xa G(x,y) = =6(x-y),
(&)

G(aaVY) = G(b,}’) = O: (a =y = b)e

First, mote that the boundary conditions on G are satisfied by virtue

of the boundary conditions ga(a) =g (b) = 0, and that G(x,y) is continucus

b
at x = ¥y.

Next, note that since both ga(x) and gb(x) satisfy equatiom (2}, then

d d . ‘
dxp(x) = " r(x)] G(x,y) = 0, ifx4y 3

15




that is, G satisfies equation (8) everywhere except (possibly) at the points
X =y, where L,G is not defined except in the sense of a distribution.
Finally, in the vicinity of the points x = y, G must satisfy the

condition

. y+e
1 d d
eig 3P + T(®))6(x,y)dx = -1,
y-€

This reduces to

X = y+€
o peSee,y = -1,
X = y-e
or
A p(y) (e, (Mg, () - gl (Vg (7)) = -1.

By the Wronskian condition, this is satisfied.

From the above account it can be seen that the conditions for the
existence of the Green's function then are essentially the same as the
conditions for the existence of solutions to the differential equations (&)

and (5). Sufficient conditions for the existence of g, and g, are known

from the theory of ordinary differential equations and are that r{x)
and 1/p(x) be piecewise continuous and finite on the internal a £ x £ b.

One additional condition is required for the existence G and that is
that the Wronskian constant, A, have‘an inverse, i.e., A # 0. This is
equivalent to requiring that the two solutions 8, and 8y, be linearly indepen-
dent. If g, and g, are not linearly independent, then gb(a) = 0, g&<b} = 0,

A = 0, and there will be no Green's function for these boundary conditions.

16




If g, and g, are linearly independent, then ga(b) £ 0, gb(a) £ 0, A#£0,

and there will be a Green's function for these boundary conditions.
Green's functions for other boundary conditions can be calculated in
a similar way. All that changes are the boundary conditions associated

with the equations determining ga(x) and gb(x), although it should be

pointed out that only those boundary conditions of the form ga(a} = 0,

gb(b) = 0, g;(a) = 0, gg(b) = 0, or some linear combination of these, will

necessarily have an associated G.
However, it should be noted that with boundary conditions of the form

ufa) = U ub) = U solutions to the equation L,u = f can be obtained in

the form

u = ~Gf + v,

that is,
b
u@) = - G, y)E(y)dy + v(y).
a
Here G is the same Green's function as for the zero boundary conditions.

The function v, called the particular solution, satisfies L,v = 0 with

v(a) = u, and v(b) = . One can see that

e = g, )uy . gb(X)ua
- g, (®) g, (@ ’

-1 -
At g u, - g, (u )
where the g's are the same as those defined for the zero boundary condition.

17




B. Systems of Equations

The Green's function for the matrix operator L, can be obtained in a
fashion similar to that described above for the scalar case,

The function G satisfies the system of equations and boundary conditions

o,
S

d d )
d 4 = =5, 6(x- :
1sisn<3 ij(x)i + rjk(X) ka(x,y) éjm (x-y), )

Gjm(a’Y) = Gjm(ba}’) =0, jom = 1,2..1’1,

which will be shortened to

(PG (x,y))" + r(®)G(x,y) = L8(x-y),

where p, r and G are n-by-n matrices and the primes indicate differentiation
with respect to x.
Introduce now the square n-by-n matrix functions 8,0 8> Ja5 and Jb that

satisfy the matrix equations and boundary conditions

g, (x) = p™h (x)J_ (%),
J () = -T (x)g, (%), (10)
g,(a) =0, I (a) =T,

and
g (%) = p™ (®)I (=),
Jp&) = —r®)g, x) (11)
g, (®) =0, J () = I.

18




It is clear that g, and 8, both satisfy the equation I,g = 0 or

(p®)g'x))" + r(®x)gx) = 0. {12)

These equations can be solved as systems 20 coupled ordinary
differential equations, integrating from a on the first set, and from b on
the second set. The standard theorems for systems of ordinary differential
equations apply and can be used to guarantee existence and uniqueness of
the solutions provided p and r meet the appropriate conditions discussed

later. Numerical methods can be used to tabulate g, and &,

Also needed are the adjoint equations for the same boundary conditions.

Let
(' &®)pE)' + h®)rx) =0, (133

where h is an n-by~n matrix. Introduce h hb’ Ka and Kb that satisfy the

a’

matrix equations and boundary conditions

h! (x) = K (x)p™ (),
K (%) = -h_(x)r(x), (14)
h (a) =0, K (a) = I,

and
bl () = K (x)p™ (%),
K, (%) = -h (x)r(x), (15)
h (b) = 0, K () = T,

19




so that ha and hb satisfy the adjoint equation (13) and indicated boundary

conditions.

Solutions of (12) and (13) satisfy Wronskian conditions. For g, J, h,

and K these are

h (x)J () - Kb(X)ga(X) = A,
K (x)g (x) - h (x)JI ) = Ay,
(16)
h (x)J (x) - K (x)g (x) = A,
h, ()3 (x) - K (x)g, (x) = A

where the A's are constant matrices and from the given boundary conditions

g
I

b, (a)

-g, (P,

it

N
1t

g () = -h_®), (1)

Aa = Ab = 0.

It is clear that equations (14) and (15) can be integrated numerically
as systems of ordinary differential equations with initial comditions, and
tables of the h's constructed on the interval [a,b]. The existence and
uniqueness conditions are straightforward and are the same as those for
the g's.

The Green's function for the matrix operator L, and these boundary

conditions can now be constructed as

g, GO (9), 5 5 7,

G(x,y) = (18)
g, F)AZTh (¥), x 2 ¥.

20




It is easily seen that:
1) G satisfies the boundary conditions,
2) (PEG (x,y))" + r(x)G(x,y) =0, if x £y.
It is a bit more complicated but only an exercise in algebraic
manipulation to show that the third and fourth conditions required are

satisfied, i.e.,

»
]
«
-+
®

lim d
—_— = =T
3) P &) FH6&,y) >

X

il
<
]
@

and
4) ga(y)Aflhb(y) = gb(y)Aglha(y), (the continuity condition for

G(x,y) at X = ¥).

Consider now the questions of existence of the matrix G. OUne needs
restrictions on the matrices p and r to guarantee the existence and unique-
ness of the g's and h's. A sufficient condition for the existence and
uniqueness of the g's and h's is that r(x) and p™* (x) exist and be piecewise
continuous on the interval [a,b].

One further condition is necessary for the existence of G and this is
that the Wronskian constants, the matrices Ay and A, have inverses. It is

not clear how these conditions reflect back on p and r since A1 = Ry (2) = -g_(P)
and A, = gb(a) = —ha(b), and the existence of the inverses of the g's and h's

at the end points is difficult to determine except possibly numericallv.

21




Thus, one can state sufficient conditions for the existence and unique-

ness of G as being

a) existence and piecewise continuity of r and pt,

b) existence of A* and A%,
but note that these may be difficult to estagblish in any particular case--
especially the existence of A7l and A3'.

It was noted before that other boundary conditions give different Creen's
functions for the same L, operator. While a particular set of boundary
conditions were considered here, the same techniques apply to finding the
G matrices for the various other boundary conditions.

We conclude this section by noting that the numerical calculation of
the matrix G can be a monumental task. One integrates four sets of 20°
simultaneous differential equatioms (or 4 n sets of 2n equatiomns) to cbtain
the g's and h's, which then must be stored or tabulated at each point
appropriate to the interval [a,b].

In practice it is usually convenient to deal with the matrix CGreen's
function only when G is diagonal. This will occur if it can be arranged
that p and r are diagonal. The g's, h's, J's, K's and A's then are also
diagonal and all commute. Thus if L, is diagonal, the problem decomposes
into an uncoupled collection of n, one-dimensional problems. Thst is,
one can look for the Gkk(x,y) independently by integrating for n separate
scalar g's. Also the corresponding h and g functions are equal and the

adjoint equations need not be solved separately.
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For I, diagonal, G is of the form

gka(X)gkb(y) X<y,

G (X3Y) = ATt
¢ £ g, g ) x>y,

k =1,2..n,
where the g's are solutions of the equations
Ba ®) = Jpeg ) /Py ()5
Jﬁa(X) = -rk(X)gka(X),
g,,(8) = 0, J () =1,
k=1,2,..n,

and

8y ) = T /P, )5

T &) = -1 (K)gyy (%),
gpP) = 0, J (x) =1,
k= 1,2...n,
and the A's are given by the Wronskian condition

Ja ®gy &) - Ty X)gy x) = A, k= 1,2..n.

Here the k index designates the diagonal element of the corresponding
diagonal matrix.
Unless the number of dimensions is small, only the diagonal Green's

functions are of much practical use in numerical work.
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C. Analytic Form for Some Simple Operators

It has been shown that the scalar Green's function can be written as

g, (®)g (y), x =<y,

G(x,y) = A-?
gb(X)ga(y), X2y,

where the g's satisfy the equation

Lg =0

and ga(x) satisfies the boundary conditions at a, while gb(x) satisfies the
boundary conditions at b. Thus, if one can find analytic solutions of

L,g = 0 that satisfy the boundary conditions, establish linear independence
of g, and 8 and find the Wronskian constant, one can give analvtic forme
for G.

Table I lists some of the simpler but commonly encountered forms of I

W

some typical boundary conditions, and the corresponding Greem's functions

in analytic form.
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Table I

A tabulation of Green's functions for some simple forms of

L, = %p(x)f}z + r(x) and boundary conditions.
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IV. COMPUTER EXPERIMENTS

A. Introduction

A series of computer experiments were carried out to investigate con-
vergence of various iteration schemes for solution of the two-point boundary
value problem. Particular attention was paid to cases where the standard
convergence theorems did not apply; that is, the cases where there were
multiple solutions, or where existence of even one solution was an open
question.

Three groups of problems were examined. The first of these is typified

by the equation

dz
agzu(x) = -2 sinu(x),
(1)
u(0) = u(l) = 0.

This problem is characterized by having one solution at u(x) = 0, and
at least two other solutions. The iterative scheme

1
un+l(x) = 2ﬂ2I G(x,y)sinu” (y)dy (2)
0

is unstable in the neighborhood of u(x) = 0 but could be expected to be
locally stable in the neighborhood of each of the other two solutions.

The second group of problems is associated with finding orbits of the
restricted three body system charactefized by a fixed time between two
fixed end points., Here one has a pair of differential equations {(that can
be written as a single second order differential equation of a complex

variable) with two-point boundary conditions.
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The equations represent the motion of a very light body in the
gravitational field of two massive bodies. The two massive bodies are at a
constant separation (circular orbit) and the lighter body is restricted to
move in the plane of their rotation. In the rotating coordinate system in
which the two massive bodies appear to be at rest, the equations of motion

for the restricted three-body problem are

se 95 - ! (x + ) ) (x - u') s

X =X + 2y H ((X+}J.)2 +y2)3 /2 H((X_Hl>2+yg)3/2 5 (3a)

. - 2% -yt v ) v -
=y X M ((X+H)2+y2)3/2 H((X'H')2+y2)3/2 . (31

Here the two massive bodies are located on the x axis with the center of mass
of the system at the origin, W is the ratio of the mass of the body located
on the positive x axis to the mass of the entire system, and p' is the ratio
of the mass of the body located on the negative x axis to the mass of the
entire system (u-+p'=1). The units of distance here are chosen so that

the distance between the two massive bodies is unity, and the unit of time

is chosen so that the angular velocity of the rotating reference frame is
unity (period = 2m).

The third group of problems is that of finding periodic orbits of the
restricted three body system. Here one has the same equations as in the
second group but with different boundary conditions.

Arenstorf [29] has shown the existence of periodic orbits for this
system but there are practical problems in actually finding such orbits.

This problem was considered in the hope that the Green's function method would

be useful in finding these Arenstorf orbits. But one of the characteristics
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of this problem is that not only are there multiple solutions, but these
solutions are densely packed. That is, some solutions have the property
that in every neighborhood of the solution there are other sclutions.
Thus, instead of converging to a particular solution, the iterative

scheme has a tendency to wander or drift through a family of solutions.
This wandering continues until a solution is encountered that is more
stable than any of its neighbors. The more stable solutions seem to be
ones with the largest radii of curvature or the ones with the least number

of axis crossings.
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B. Some Simple Nonlinear Problems

The first group of problems run are some simple examples of nonlinear
two-point boundary value problems where the usual existence and uniqueness
theorems are not valid but for which local stability might be expected.

These are of the type

d.?
Lueo = £6,u00),

@

u(0) = u(l) = 0,

with various forms of f£f. The Green's function is elementary.
A computer program was written (in Algol for the B 5500) to solve
equation 4 by iterating on the Green's function integral
n+l ! n
o)== [ 6E,y)E(,u (v))dy. (5)
0

A variation of this with a relaxation parameter was also used; that is,

1
) - Q0@ - of eEEE,e ). 5"
0

w is called the relaxation parameter (w>1 is called over-relaxation, w<1l
is called under-relaxation) and can be used to control the speed of conver-
gence,

Starting with an initial trial solution uo(x) the program iterates to
find successive un(x) stopping when the maximum difference in two consecutive
iterations drop below a given threshold. The function un(x) is constructed
as a table of values on the interval [0,1] and, through interpolation, values

at points between tabulated values are obtained.
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The results for various f functions are given in Figure 1.

A technique used to reduce computation time is the progressive refine~
ment of the mesh size, interpolation, and quadrature procedures. One
starts with a coarse mesh and crude interpolation and quadrature procedures
and, as convergence progresses, proceeds to a finer mesh, higher order inter-
polation and more accurate quadrature.

Figure la shows the sequence of approximations for the case
fx,u) = -21f sin u.

This case is known to have multiple solutions. The solution u(x) = 0,

0 <x <1, is unstable, but at least two others are locally stable, and the
initial trial solution, uo(x) = sinmx, is shown here converging to ome of
these stable solutions.

Figure 1b shows the sequence of approximations for the case
f(x,u) = -1 (2-cos x)sinu.

Again there is an unstable solution, u(x) = O. The initial trial solution
o
u (x) = sinmx converges to a locally stable solution.

Figure lc shows the case
f(x,u) = -ﬂz«u—Bu'l/S)/44-ZSins/znxj.

Here an analytic solution is known, u(x) = siﬂB&1Tx. The initial trial
. O . . . P
solution of u (x) = sinx convergence to this solution even though £ is

singular at the boundaries where u(0) = u(l) = 0.
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Figure 1

Figure 1 shows the sequence of iterates for solutions of the equatiocns

2
d%-z—u@) = f(x,u(x)); u(0) = u(l) = O.

Figure la is for f(x,u) = -2™sinu.

It

Figure 1b is for f(x,u) = -M° (2 - cos mx)sinu.

Figure lc is for f(x,u) - ((u - 3u‘1/3)/4 + ZSing/zTrx).

Initially a coarse mesh, linear interpolation and a crude quadrature
scheme was used. As convergence increases, the program switches tc
progressively finer mesh, more accurate quadrature, and spline-like inter-
polation. For clarity, successive iterations are displaced with respect

1.

to each other and scaled down slightly. The relaxation parameter, w = 3,

was used.
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C. Three Body Orbits

The second group of problems is associated with finding solutions of
the restricted three-body problem that pass through two given points in
a fixed time (rendezvous problem).

The differential equation [29] is

Z(t) + 2iz(t) - Yo z(t) = -£(z(t)), (6)

where

p'(zH) pe-p')
RN EET

f(Z) = - (1"’Ye)z>

P
wod
S

with the boundary conditions

z{a) = za,z(b) = Zy .

Here v, u, and p' (u+up' =1) are constants and i =‘/-1. z =X + iy is a

complex variable so that this equation represents a pair of coupled real

second order differential equations with two-point boundary conditions.

1) The Green's function for the restricted three body orbits

The Green's function for the operator

=__.._._d2 '_d'_. 4
L, = Fr=ai Zldt 5 (8)

with boundary conditions
G(a,s) = G(b,s) = 0 , (9)
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can be written as

1 v(t-a) v(s-b), t < s,

G(t,s) = (10)
HE) v (e-b) v(s-a), £z s,
where
W(s) = V(s-a) v(s-b) - V(s-b) v(s-a). (113
(The Wronskian is not constant if I, is not self-adjoint.)
: . - . ot B
The function v is a solution of Lyv = 0; v(0) = 0; i.e., v(t) = e =e"";

o,B=~i(1 £ |/1-¥®). The parameter Y is artificially introduced. Its value
can be adjusted to control the rate of convergence of the iteration.
Since the boundary conditions are not zero, the integral equation form
of (6) is
b
z(t) = V(t) + [ G(t,s)E(z(s))ds. (12)
a
Here G is the Green's function given by (10) above, V(t) is the particular
solution satisfying IpV = 0, and the boundary conditions V(a) = Z s

V(b)) = 2 i.e.,

v(t-a) N v{t-b)
v(b-a) b " v(a-b) %

v(t) =

2) The computer program

A computer program was written in Fortran for the UNIVAC 1108 to
integrate the equation
b

ey - vy + [ ete,)EE (s))ds, (14)
a
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where V, G and f are given in (13), (10), and (7) respectively. Starting
with an initial guess of zo(t), the program iterates to find successive zn(t}§
stopping when the maximum difference in two consecutive iterations drops
below a prescribed threshold.
The function zn(t) is approximated by constructing a table of its
values on the interval [a,b] and using cubic splines [24-27] to interpolate
for the in-between points. These splines are also used to do the quadrature.
A relaxation parameter was also introduced to help convergence; that

is, instead of (14), one uses
b N
zn+1(t) = (l-w)zn(t) + wiv(t) + I G(t,s)fn(z(s))di}p (15)
a

where w is the relaxation parameter. The case w< 1 is referred to as under-
relaxation; the case W > 1 is referred to as over-relaxation. This gives in

effect two parameters, Y and ®, tobe adjusted to speed and countrol convergence.

3) Results
Figure 2 shows a typical example of the sequence of approximations

from this iteration. The boundary conditions are z(0) = 1.2, =z{(3.06) = - 1.5
The system constants p and p' (u+p' =1) characterize the earth moon system,
g o= 0,012277471; here v = 0.95 and ®w = 0.5. The initial orbit is marked with
an I, and the final orbit with an F.

One notes here the dramatic and rather violent departure from the initial
approximation (the first iteration leaves the page for most of the orbit}.
However, succeeding iterates come back on the page and quickly settle down

to an almost circular uniform speed orbit.
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Figure 2

Figure 2 shows the convergence of the iteration scheme for a
rendezvous type orbit (fixed time between two fixed points) of the
restricted three body system.

The three body parameters are chosen so that the earth-moon system
is represented (U ~ 0.012). The orbit is represented in the rotating
reference frame, normalized to unit angular velocity (period = 27) and
unit earth-moon distance. The length of the dashes is proportional to
the speed in that part of the orbit. The time for the orbit is 3.06.

The earth, moon, initial and final orbits are indicated with the

letters E, M, I, F respectively.
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There is an orbit satisfying the boundary conditions in the neighbor-
hood of the initial trial solution, but it is either highly unstable for
this iterative scheme or else the initial guess was not close enough to
have been in the stable region.

This behavior is typical of this particular problem, that is, orbits
having a fixed time between two fixed points in the neighborhood of the
earth-moon system. Only those orbits that were very smooth appeared to be
stable. The more complex orbits between the same two points appeared to be

unstable for this iterative scheme.
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D. Arenstorf Orbits

A third group of problems is associated with finding periodic orbits
of the restricted three body system [29]. Here one uses the pair of

coupled differential equations

a® 2 R ;
= "V x(t) = -5 (F(B),x(£),y()), (16a)
a4z 2 . P
e - Y ) ye) = -E (R (E),x(8),y(8)), (16b)
where
£ (7,%,5) = =25 + & §§+“) + “(§?§ L P-D)x, (17a)
fa (%,%,5) = 2% + %;? + ﬁ?% + (F-Dy, (17b)

r =)y, o1t o= /&' )PP,

~ The boundary conditions for an orbit of period T are
X(0) = 0, y(0) =0,
%(T/2) = 0, y(T/2) = O.

Here v, 4 and u' (u+p'=1) are constants.
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1) The Green's functions

2

2
EE'Z— - Y are

The Green's functions for the operator

1 cosh(y(t~a))cosh(y(b-s), & = s,

= ysinh(Y(b-a))

G, (t,s)
cosh(y(b-t))cosh(y(s-a), &t = s,

and

1 sinh (Y (t-a))sinh(¥Y(b-s)}, &t < s,

G (£:8) = TR (Yb-2))

sinh(Y(b-t))sinh(Y(s-a)), & = s,

The first of these satisfies the boundary conditions

d
EEG:L (t,S) E =

d .
a_dtGl(tas)tzb—'Oﬂ

the second, the conditions
G, (a,s) = G (b,s) = 0.

In terms of these Green's functions, equations (16) become

x(t)

if

b
I Gz (tys)fl (57 (S) :X(S)’Y(S))dsa
a

y(t)

i

b
J G2 (t,8) s Gi(s),x(s),y(s))ds.
a

The parameter ¥ in these equations is an artificially introduced
parameter whose value can be adjusted to control the rate of convergence
of the iteration. Values of ¥y in the neighborhood of 0.95 to 1.00 were

generally satisfactory.
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2) The computer program

A computer program was written (in Fortran for the UNIVAC 1108)

to integrate the pair of equations

b

) = [ e e,9n (s, (21a)
a
1 b
yT(E) = [ Gy (t,8)E " (s)ds, (21b)
a
£, 7)) = £ §7(s),y (s),x"(s)),
£,7(s) = £, & (s),x (s),y (s)),

where the G's and f's are given in (18) and (17). Starting with initial
guesses of %% and yo, the program iterates to find successive x" and yma
stopping when the maximum difference in two consecutive iterations drops
below a prescribed threshold.

The functions xn(t) and yn(t) are approximated by constructing tables
of their values over the interval [a,b] and using cubic splines to inter-
polate for the in~between points. These splines are also used to do the
quadrature over each interval and to approximate x and y.

A relaxation parameter was also introduced to help convergence; that

is, instead of (21), one uses

b
xn+1 = (1-w)xn + Qf Gl(t,s)fln(s)ds, (21%a)
a
n+l n b n
v = (1-w)y  + wj Go (t,s)fs (s)ds, (21'b)
a
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where w is the relaxation parameter. The case w < 1 is referred to as under-
relaxation; w > 1 is referred to as over-relaxation. This gives two parameters
w and Y to control or speed convergence, and various strategies were used o

hunt for the optimum value of W,

3) Results
Figure 3 shows the results of one of the apparently successful hunts
for an Arenstorf orbit. Figure 3a shows the initial orbit, 3b the successive
iterations, and 3¢ the final orbit. The system parameters here are for the
earth moon system (U a~ 0.012) with Y = 0.95 and w » 0.12.

One notes that convergence appears to take place and that the final
orbit is not too\different from the initial guess., This convergence may be
an illusion, and, if the iterations were allowed to continue, a very slow
drifting away from 3c would eventually take place.

The difficulty is that with these boundary conditions the sclutions
are densely packed. That is, not only are there multiple solutions, but
in every neighborhood of a periodic orbit there is another (having the same
period). If the iterative scheme is allowed to continue, driftimng around
among these scolutions continues until some especially stable solution is
found. This behavior appears in other experiments (Figure 4, for example).

Figure 4 also shows an attempt to find a periodic orbit. The orbit
parameters and initial trial orbit are exactly the same as in Figure 3, The
only difference in the iteration scheme is that a slightly different method
of hunting on ¥ was used. This sequeﬁce of orbits in Figure 4 has not con-
verged yet, and if it is going to converge, it is clearly not going fto be

the same orbit as Figure 3c.
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Figure 3

Figure 3 shows the convergence of the iteration scheme for a pericdic,
or Arenstorf, orbit of the restricted three body system. Figure 3a is
the initial guess at the orbit, Figure 3b shows the sequence of orbits
obtained by the iteration scheme, and Figure 3¢ is the final orbit to
which the iteration appears to have converged.

The three body parameters are chosen so that the earth-moon system
is represented (U a 0.012). The orbit is represented in the rotating
reference frame, normalized to unit angular velocify (period = 211}, and
unit earth-moon distance. Only half the orbit is shown, the other half
is symmetric with that given. The length of the dashes is proportional
to the speed in that part of the orbit. The full period of this orbit

is 6.12.
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Figure 4

Figure 4 shows a sequence of iterates in search of a periodic orbit
of the restricted three body system.

The three body parameters are chosen so that the earth-moon system
is represented (u =~ 0.012). The orbit is represented in the rotating
reference frame, normalized to unit angular velocity (period = 277), and
unit earth-moon distance., Only half the orbit is shown; the other half
is symmetric with that given. The length of the dashes is proportional
to the speed in that part of the orbit. |

The sequence of iterations has not yet converged.
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This example shows the difficulties associated with finding a particular
periodic orbit. Because of the dense packing of these orbits, the final
orbit to which convergence takes place depends on the details of the
iteration scheme, such as w, the value of the relaxation parameter, or the
method of searching for an optimum w.

Experiments of this type suggest that the most stable of the periodic
orbits are those showing the greatest radii of curvature, or that have the
fewest axis crossings, or that stay as far as possible from the gingular

points at E and M.
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V. RESULTS AND CONCLUSIONS

A, Summary of Results

The primary result of this study is to show that the Green's functiocn
method of solving the two-point boundary value problem can be an effective
tool in numerical work.

There is a straightforward prescription for producing the Green's
function for both the single equation and for the system of equations case.
It can be given in terms of solutions to sets of initial value problems
which in turn can be generated to arbitrarily high order and accuracy by
standard techniques such as Runge-Kutta, Adams, or other methods.

For linear éifferential equations the solution can be given directly
in terms of the integral over the Green's function. For the nonlinear
case, the Green's function provides an iterative scheme only. Convergence
must be investigated in each individual case. There exists a literature
on convergence theorems for a variety of classes of problems, but even
when convergence cannot be guaranteed a priori, the method can often be
used when combined with a relaxation method or other devices.

For single second order ordinary differentials the work involved in
finding the Green's function can be considered nominal. For systems of
such equations the work involved goes up as the square of the number of
equations and may be considered excessive if the number of equations is

large. 1In this case, a technique of splitting the original differential

operator into a diagonal and off-diagonal component can be used. The Green'

function for the diagonal component is then just the set of Green's func-

tions for the individual (uncoupled) diagonal elements and the work
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involved is only linear in the number of equations. The solution now
involves a sequence of iterations, even in the linear case, and raises
additional questions of convergence, but this could still turn ocut to be
less work than finding the entire Green's function for the original matrix
operator, especially if the problem is nonlinear, and iteration will be
required anyway,

The particular numerical experiments carried out involved problems
for which there were multiple solutions or for which the standard existence,
uniqueness, and convergence theorems were not applicable. A search for
orbits of the restricted three body system was investigated for both the
rendezvous type -orbits and periodic orbits. The orbits showing most
stability with respect to the iteration scheme were those having the largest
radii of curvature or that stayed farthest from the singular points. Searches
for particular periodic orbits did not prove fruitful, since these solutions
are densely packed., The problem of singling out a special one by this

method needs further investigation.

B. Recommendations for Further Study

Continued work is needed in the theoretical area of convergence and
stability of iterative methods for the two point boundary wvalue problem.
In the cases where multiple solutions exist, methods need to be devaloped
to determine which solutions are locally stable, which are more stable
than others and what are the regions of convergence or stability. These
investigations could also examine the role of the relaxation parameter in

the convergence process.
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In the area of numerical experiments, more work should be done in
comparing the Green's function method directly to the shooting method of
solving the two-point boundary problem to see wﬁlch takes less computer
time, storage space, etc.

There is another way in which the Green's function method can be used,
but there has been little or no numerical experimentation undertaken. The
theory is reasonably straightforward and goes as follows:

Let L, be a second order linear differential operator and the function u

satisfy the equation
Lou = £(u) (1)

with zero end point boundary conditions, u{a) = u(b) = 0. Assume that £({u)

is a reasonably well behaved function, that jlf(u) exists and can be com~

ou
puted for functions u in some neighborhood of the solutions to (1), and

let u be a solution in this neighborhood. Then

L - E@)u = f@ - LD,
or
igu = f(u) - £'u,
where iz =L, - £, EE:=§§(G). If there now exists a Green's function

for ie: say é, then

u = -G(f(u) - £'u).
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One now looks at the iterative equation

un+l = -3 f(un) - B , (2)

where

A O] FUE SN AL AN
and G° is the Green's fumction for ig.

The iterative scheme (2) can be shown to converge quadradically.

That is, it is always locally stable provided that the indicated entities
exist. The system (2) is analogous to the Newton-Raphson method.

While this method has the advantage of being locally stable, it has
the disadvantage of requiring the recalculation of én} the Green's function,
at every step. Whether this is practical or not needs to be determined
by numerical experiments.

A technique similar to (2) above exists if f also depends on the

derivatives of u; i.e., if £ = £(u,u’).
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