262 research outputs found
Determiner spreading as DP-predication
Determiner Spreading (DS) occurs in adjectivally modified nominal phrases comprising more than one definite article, a phenomenon that has received considerable attention and has been extensively described in Greek. This paper discusses the syntactic properties of DS in detail and argues that DS structures are both arguments and predication configurations involving two DPs. This account successfully captures the word-order facts and the distinctive interpretation of DS, while also laying the groundwork towards unifying it with other structures linking two DPs in a predicative relation
Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes
BACKGROUND: In bacteria, the biosynthesis of polyamines is modulated at the level of transcription as well as post-translationally. Antizyme (Az) has long been identified as a non-competitive protein inhibitor of polyamine biosynthesis in E. coli. Az was also revealed to be the product of the atoC gene. AtoC is the response regulator of the AtoS-AtoC two-component system and it functions as the positive transcriptional regulator of the atoDAEB operon genes, encoding enzymes involved in short chain fatty acid metabolism. The antizyme is referred to as AtoC/Az, to indicate its dual function as both a transcriptional and post-translational regulator. RESULTS: The roles of polyamines on the transcription of atoS and atoC genes as well as that of atoDAEB(ato) operon were studied. Polyamine-mediated induction was tested both in atoSC positive and negative E. coli backgrounds by using β-galactosidase reporter constructs carrying the appropriate promoters patoDAEB, patoS, patoC. In addition, a selection of synthetic polyamine analogues have been synthesized and tested for their effectiveness in inducing the expression of atoC/Az, the product of which plays a pivotal role in the feedback inhibition of putrescine biosynthesis and the transcriptional regulation of the ato operon. The effects of these compounds were also determined on the ato operon expression. The polyamine analogues were also tested for their effect on the activity of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis and on the growth of polyamine-deficient E. coli. CONCLUSION: Polyamines, which have been reported to induce the protein levels of AtoC/Az in E. coli, act at the transcriptional level, since they cause activation of the atoC transcription. In addition, a series of polyamine analogues were studied on the transcription of atoC gene and ODC activity
Comparison of the Impact of Ga-68-DOTATATE and F-18-FDG PET/CT on Clinical Management in Patients with Neuroendocrine Tumors
This study aimed to assess the clinical impact of 68Ga-DOTATATE and 18F-fluorodeoxyglucose
with respect to the management plan and to evaluate the prognostic value of both tracers.
Methods: A total of 104 patients (55 males, 49 females; median age 58 years, range 20–90) with
histopathologically proven neuroendocrine tumors (NETs) underwent both 68Ga-DOTATATE
and 18F-FDG PET/CT. Twenty-eight patients (26.9%) had poorly differentiated (PD) and 76
(73.1%), well-differentiated tumors. PET/CT results and SUVs were compared with prognostic
factors such as pathologic grading (G1, G2, G3), chromogranin A, and proliferation index
(Ki67).
Results: 68Ga-DOTATATE and 18F-FDG PET/CT findings were discordant in 65 (62.5%) and
concordant in 39 (37.5%) pts. PET/CT results changed the therapeutic plan in 84 (80.8%) pts. In
22 (21.1%) pts decision making was based on 18F-FDG findings, in 32 (30.8%) on findings with
both radiotracers, and in 50 (48.1%) on 68Ga-DOTATATE findings. The most frequent
management decision based on 18F-FDG was initiation of chemotherapy (10 pts, 47.6%). The
most common treatment decision due to 68Ga-DOTATATE was initiation of peptide receptor
radionuclide therapy (14 pts, 27.4%). In 11/28 (39.2%) pts with PD NETs the management
decision was based only on 18F-FDG results. For 68Ga-DOTATATE, SUVmax was higher for G1
and lower for G3 tumors (p=0.012). However, no significant differences in 18F-FDG-derived
SUVs were observed between different tumor grades (p=0.38). Mann-Whitney test showed
significant differences in 68Ga-DOTATATE SUVmax between tumors with Ki<5% and tumors
with Ki>5% (p=0.004), without significance differences in 18F-FDG SUVmax. Log-rank analysis
showed statistically significant differences in survival for patients with bone vs soft tissue or no
metastasis for both 18F-FDG (p=0.037) and 68Ga-DOTATATE (p=0.047). Overall survival was
found to decline rapidly with increasing histological grade (p=0.001), with estimated survival of
91 months for G1, 59 months for G2, and 48 months for G3.
Conclusion: 18F-FDG PET/CT had no clinical impact in G1 NETs and moderate impact in G2
NETs. However in PD NETs, 18F-FDG PET/CT plays a significant clinical role in combination
with 68Ga-DOTATATE. 68Ga DOTATATE SUVmax values relate to tumor grade and Ki67 index
and can be used prognostically
α-cell glucokinase suppresses glucose-regulated glucagon secretion
Glucagon secretion by pancreatic α-cells is triggered by hypoglycemia and suppressed by high glucose levels; impaired suppression of glucagon secretion is a hallmark of both type 1 and type 2 diabetes. Here, we show that α-cell glucokinase (Gck) plays a role in the control of glucagon secretion. Using mice with α-cell-specific inactivation of Gck (αGckKO mice), we find that glucokinase is required for the glucose-dependent increase in intracellular ATP/ADP ratio and the closure of K javax.xml.bind.JAXBElement@dee6e8 channels in α-cells and the suppression of glucagon secretion at euglycemic and hyperglycemic levels. αGckKO mice display hyperglucagonemia in the fed state, which is associated with increased hepatic gluconeogenic gene expression and hepatic glucose output capacity. In adult mice, fed hyperglucagonemia is further increased and glucose intolerance develops. Thus, glucokinase governs an α-cell metabolic pathway that suppresses secretion at or above normoglycemic levels; abnormal suppression of glucagon secretion deregulates hepatic glucose metabolism and, over time, induces a pre-diabetic phenotype
Excessive Islet NO Generation in Type 2 Diabetic GK Rats Coincides with Abnormal Hormone Secretion and Is Counteracted by GLP-1
BACKGROUND: A distinctive feature of type 2 diabetes is inability of insulin-secreting beta-cells to properly respond to elevated glucose eventually leading to beta-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of beta-cell dysfunction. PRINCIPAL FINDINGS: We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon. CONCLUSION: The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms
By Any Other Name: Heterologous Replacement of the Escherichia coli RNase P Protein Subunit Has In Vivo Fitness Consequences
Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification
Prognostic or predictive role of gene mutations in chronic lymphocytic leukemia: results from the pivotal phase III study COMPLEMENT1
Next generation sequencing studies in Chronic lymphocytic leukemia (CLL) have revealed novel genetic variants that have been associated with disease characteristics and outcome. The aim of this study was to evaluate the prognostic value of recurrent molecular abnormalities in patients with CLL. Therefore, we assessed their incidences and associations with other clinical and genetic markers in the prospective multicenter COMPLEMENT1 trial (treatment naive patients not eligible for intensive treatment randomized to chlorambucil (CHL) vs. ofatumumab-CHL (O-CHL)). Baseline samples were available from 383 patients (85.6%) representative of the total trial cohort. Mutations were analyzed by amplicon-based targeted next generation sequencing (tNGS). In 52.2% of patients we found at least one mutation and the incidence was highest in NOTCH1 (17.0%), followed by SF3B1 (14.1%), ATM (11.7%), TP53 (10.2%), POT1 (7.0%), RPS15 (4.4%), FBXW7 (3.4%), MYD88 (2.6%) and BIRC3 (2.3%). While most mutations lacked prognostic significance, TP53 (HR2.02,p<0.01), SF3B1 (HR1.66,p=0.01) and NOTCH1 (HR1.39,p=0.03) were associated with inferior PFS in univariate analysis. Multivariate analysis confirmed the independent prognostic role of TP53 for PFS (HR1.71,p=0.04) and OS (HR2.78,p=0.02) and of SF3B1 for PFS only (HR1.52,p=0.02). Notably, NOTCH1 mutation status separates patients with a strong and a weak benefit from ofatumumab addition to CHL (NOTCH1wt:HR0.50,p<0.01, NOTCH1mut:HR0.81,p=0.45). In summary, TP53 and SF3B1 were confirmed as independent prognostic and NOTCH1 as a predictive factor for reduced ofatumumab efficacy in a randomized chemo (immune)therapy CLL trial. These results validate NGS-based mutation analysis in a multicenter trial and provide a basis for expanding molecular testing in the prognostic workup of patients with CLL. ClinicalTrials.gov registration number: NCT0074818
Escherichia coli genome-wide promoter analysis: Identification of additional AtoC binding target elements
<p>Abstract</p> <p>Background</p> <p>Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of <it>E. coli </it>activates the expression of <it>atoDAEB </it>operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that <it>atoSC </it>is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the <it>atoDAEB </it>promoter as the single, <it>cis</it>-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the <it>E. coli </it>genome.</p> <p>Results</p> <p>Through the implementation of a computational <it>de novo </it>motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the <it>E. coli </it>genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the <it>in vivo </it>binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences.</p> <p>Conclusions</p> <p>This study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.</p
- …