1,572 research outputs found
Near Infrared Spectroscopy of High Redshift Active Galactic Nuclei. II. Disappearing Narrow Line Regions and the Role of Accretion
We present new near infrared spectroscopic measurements for 29 luminous
high-z quasars and use the data to discuss the size and other properties of the
NLRs in those sources. The high resolution spectra have been used to carefully
model the Fe II blends and to provide reliable [O III], Fe II and Hb
measurements. We find that about 2/3 of all high luminosity sources show strong
[O III] lines while the remaining objects show no or very weak such line. While
weak [O III] emitters are also found among lower luminosity AGN, we argue that
the implications for very high luminosity objects are different. In particular,
we suggest that the averaging of these two populations in other works gave rise
to claims of a Baldwin relationship in [O III] which is not confirmed by our
data. We also argue that earlier proposed relations of the type R_NLR \propto
L_[O III]^{1/2}, where R_NLR is the NLR radius, are theoretically sound yet
they must break down for R_NLR exceeding a few kpc. This suggests that the NLR
properties in luminous sources are different from those observed in nearby AGN.
In particular, we suggest that some sources lost their very large, dynamically
unbound NLR while others are in a phase of violent star-forming events that
produce a large quantity of high density gas in the central kpc. This gas is
ionized and excited by the central radiation source and its spectroscopic
properties may be different from those observed in nearby, lower luminosity
NLRs. We also discuss the dependence of EW(Hb) and Fe II/Hb on L, M_BH, and
accretion rate for a large sample of AGNs. The strongest dependence of the two
quantities is on the accretion rate and the Fe II/Hb correlation is probably
due to the EW(Hb) dependence on accretion rate. We show the most extreme values
measured so far of Fe II/Hb and address its correlation with EW([O III]).Comment: 10 pages (emulateapj), 9 figures. Accepted by Ap
Estimating Black Hole Masses in Active Galaxies Using the Halpha Emission Line
It has been established that virial masses for black holes in low-redshift
active galaxies can be estimated from measurements of the optical continuum
strength and the width of the broad Hbeta line. Under various circumstances,
however, both of these quantities can be challenging to measure or can be
subject to large systematic uncertainties. To mitigate these difficulties, we
present a new method for estimating black hole masses. From analysis of a new
sample of broad-line active galactic nuclei, we find that Halpha luminosity
scales almost linearly with optical continuum luminosity and that a strong
correlation exists between Halpha and Hbeta line widths. These two empirical
correlations allow us to translate the standard virial mass system to a new one
based solely on observations of the broad Halpha emission line.Comment: to appear in Apj; 8 pages; 5 figures; uses emulateapj5.st
Mid-Infrared line diagnostics of Active Galaxies -- A spectroscopic AGN survey with ISO-SWS
We present medium resolution (R approx. 1500) ISO-SWS 2.4--45 micron spectra
of a sample of 29 galaxies with active nuclei. This data set is rich in fine
structure emission lines tracing the narrow line regions and (circum-)nuclear
star formation regions, and it provides a coherent spectroscopic reference for
future extragalactic studies in the mid-infrared. We use the data set to
briefly discuss the physical conditions in the narrow line regions (density,
temperature, excitation, line profiles) and to test for possible differences
between AGN sub-types. Our main focus is on new tools for determining the
propertibes of dusty galaxies and on the AGN-starburst connection. We present
mid-IR line ratio diagrams which can be used to identify composite (starburst +
AGN) sources and to distinguish between emission excited by active nuclei and
emission from (circum-nuclear) star forming regions. For instance, line ratios
of high to low excitation lines like [O IV]25.9um/[Ne II]12.8um, that have been
used to probe for AGNs in dusty objects, can be examined in more detail and
with better statistics now. In addition, we present two-dimensional diagnostic
diagrams that are fully analogous to classical optical diagnostic diagrams, but
better suited for objects with high extinction. Finally, we discuss
correlations of mid-infrared line fluxes to the mid- and far-infrared
continuum. We compare these relations to similar relations in starburst
galaxies in order to examine the contribution of AGNs to the bolometric
luminosities of their host galaxies. The spectra are available in electronic
form from the authors.Comment: 24 pages, 23 figures, 5 tables. Accepted for A&
Locating Star-Forming Regions in Quasar Host Galaxies
We present a study of the morphology and intensity of star formation in the
host galaxies of eight Palomar-Green quasars using observations with the Hubble
Space Telescope. Our observations are motivated by recent evidence for a close
relationship between black hole growth and the stellar mass evolution in its
host galaxy. We use narrow-band [O II] 3727, H, [O III]
5007 and Pa images, taken with the WFPC2 and NICMOS
instruments, to map the morphology of line-emitting regions, and, after
extinction corrections, diagnose the excitation mechanism and infer
star-formation rates. Significant challenges in this type of work are the
separation of the quasar light from the stellar continuum and the
quasar-excited gas from the star-forming regions. To this end, we present a
novel technique for image decomposition and subtraction of quasar light. Our
primary result is the detection of extended line-emitting regions with sizes
ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus,
powered primarily by star formation. We determine star-formation rates of order
a few tens of M/yr. The host galaxies of our target quasars have
stellar masses of order M and specific star formation rates
on a par with those of M82 and luminous infrared galaxies. As such they fall at
the upper envelope or just above the star-formation mass sequence in the
specific star formation vs stellar mass diagram. We see a clear trend of
increasing star formation rate with quasar luminosity, reinforcing the link
between the growth of the stellar mass of the host and the black hole mass
found by other authors.Comment: Accepted for publication in M.N.R.A.
A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive
We queried the Spitzer archive for high-resolution observations with the
Infrared Spectrograph of optically selected active galactic nuclei (AGN) for
the purpose of identifying sources with resolved fine-structure lines that
would enable studies of the narrow-line region (NLR) at mid-infrared
wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory
spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used
the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with
each other, to probe gas photoionized by the AGN. We found that the widths of
the lines are, on average, increasing with the ionization potential of the
species that emit them. No correlation of the line width with the critical
density of the corresponding transition was found. The velocity dispersion of
the gas, sigma, is systematically higher than that of the stars, sigma_*, in
the AGN host galaxy, and it scales with the mass of the central black hole,
M_BH. Further correlations between the line widths and luminosities L, and
between L and M_BH, are suggestive of a three dimensional plane connecting
log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be
understood within the context of gas motions that are driven by AGN feedback
mechanisms, or virialized gas motions with a power-law dependence of the NLR
radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN
from this plane are consistent with those obtained from the M_BH-sigma_*
relation.Comment: ApJ, revised to match the print versio
Detailed Analysis of Balmer Lines in a Sloan Digital Sky Survey Sample of 90 Broad Line Active Galactic Nuclei
In order to contribute to the general effort aiming at the improvement of our
knowledge about the physical conditions within the Broad Line Region (BLR) of
Active Galactic Nuclei (AGN), here we present the results achieved by our
analysis of the spectral properties of a sample of 90 broad line emitting
sources, collected at the Sloan Digital Sky Survey (SDSS) database. By focusing
our attention mainly onto the Balmer series of hydrogen emission lines, which
is the dominant feature in the optical wavelength range of many BLR spectra, we
extracted several flux and profile measurements, which we related to other
source properties, such as optical continuum luminosities, inferred black hole
masses, and accretion rates. Using the Boltzmann Plot method to investigate the
Balmer line flux ratios as a function of the line profiles, we found that
broader line emitting AGN typically have larger H_alpha / H_beta and smaller
H_gamma / H_beta and H_delta / H_beta line ratios. With the help of some recent
investigations, we model the structure of the BLR and we study the influence of
the accretion process on the properties of the BLR plasma.Comment: 14 pages, 11 figures, fixes the wrong names of 4 objects; published
on Ap
High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei
We present relations of the black hole mass and the optical luminosity with
the velocity dispersion and the luminosity of the [Ne V] and the [O IV]
high-ionization lines in the mid-infrared (MIR) for 28 reverberation-mapped
active galactic nuclei. We used high-resolution Spitzer Infrared Spectrograph
and Infrared Space Observatory Short Wavelength Spectrometer data to fit the
profiles of these MIR emission lines that originate from the narrow-line region
of the nucleus. We find that the lines are often resolved and that the velocity
dispersion of [Ne V] and [O IV] follows a relation similar to that between the
black hole mass and the bulge stellar velocity dispersion found for local
galaxies. The luminosity of the [Ne V] and the [O IV] lines in these sources is
correlated with that of the optical 5100A continuum and with the black hole
mass. Our results provide a means to derive black hole properties in various
types of active galactic nuclei, including highly obscured systems.Comment: accepted for publication in ApJ
Enhanced Star Formation in Narrow Line Seyfert 1 AGN revealed by Spitzer
We present new low resolution Spitzer mid-infrared spectroscopy of a sample
of 20 ROSAT selected local Narrow Line Seyfert 1 galaxies (NLS1s). We detect
strong AGN continuum in all and clear PAH emission in 70% of the sources. The
6.2 micron PAH luminosity spans three orders of magnitudes, from ~10^(39) erg/s
to ~10^(42) erg/s providing strong evidence for intense ongoing star formation
in the circumnuclear regions of these sources. Using the IRS/Spitzer archive we
gather a large number of additional NLS1s and their broad line counterparts
(BLS1s) and constructed NLS1 and BLS1 sub-samples to compare them in various
ways. The comparison shows a clear separation according to FWHM(H_beta) such
that objects with narrower broad H_beta lines are the strongest PAH emitters.
We test this division in various ways trying to remove biases due to luminosity
and aperture size. Specifically, we find that star formation activity around
NLS1 AGN is larger than around BLS1 of the same AGN luminosity. The above
result seems to hold over the entire range of distance and luminosity. Moreover
the star formation rate is higher in low black hole mass and high L/L_Edd
systems indicating that black hole growth and star formation are occurring
simultaneously.Comment: 30 pages, 11 figures, 4 tables. Now accepted in MNRA
The outflow in Mrk 509: A method to calibrate XMM-Newton EPIC-pn and RGS
We have analyzed three XMM-Newton observations of the Seyfert 1 galaxy Mrk
509, with the goal to detect small variations in the ionized outflow
properties. Such measurements are limited by the quality of the
cross-calibration between RGS, the best instrument to characterize the
spectrum, and EPIC-pn, the best instrument to characterize the variability. For
all three observations we are able to improve the relative calibration of RGS
and pn consistently to 4 %. In all observations we detect three different
outflow components and, thanks to our accurate cross-calibration we are able to
detect small differences in the ionization parameter and column density in the
highest ionized component of the outflow. This constrains the location of this
component of the outflow to within 0.5 pc of the central source. Our method for
modeling the relative effective area is not restricted to just this source and
can in principle be extended to other types of sources as well.Comment: 11 pages, 9 figure
XMM-Newton RGS observation of the warm absorber in Mrk 279
The Seyfert 1 galaxy Mrk 279 was observed by XMM-Newton in November 2005 in
three consecutive orbits, showing significant short-scale variability (average
soft band variation in flux ~20%). The source is known to host a two-component
warm absorber with distinct ionisation states from a previous Chandra
observation. We aim to study the warm absorber in Mrk 279 and investigate any
possible response to the short-term variations of the ionising flux, and to
assess whether it has varied on a long-term time scale with respect to the
Chandra observation. We find no significant changes in the warm absorber on
neither short time scales (~2 days) nor at longer time scales (two and a half
years), as the variations in the ionic column densities of the most relevant
elements are below the 90% confidence level. The variations could still be
present but are statistically undetected given the signal-to-noise ratio of the
data. Starting from reasonable standard assumptions we estimate the location of
the absorbing gas, which is likely to be associated with the putative dusty
torus rather than with the Broad Line Region if the outflowing gas is moving at
the escape velocity or larger.Comment: 10 pages, 9 figures, 6 tables. Accepted for publication in Astronomy
& Astrophysic
- …