1,392 research outputs found

    ICF core sets for low back pain: do they include what matters to patients?

    Get PDF
    To investigate whether the International Classification of Functioning Disability and Health (ICF) Core Sets for low back pain encompass the key functional problems of patients

    Genetics of Isolated Growth Hormone Deficiency

    Get PDF
    When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin−like Growth Factor−I (IGF−I) plays a pivotal role, GHD could also be considered as a form of IGF−I deficiency (IGFD). Although IGFD can develop at any level of the GH−releasing hormone (GHRH)−GH−IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD

    The 3D soft X-ray cluster-AGN cross-correlation function in the ROSAT NEP survey

    Full text link
    X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters.The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a >3sigma significant clustering signal on scales s<50 h70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7+1.2-0.3 h_70-1 Mpc and a slope gamma=1.7$^+0.2_-0.7 (1sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, that the bias factor of AGN is similar to that of galaxies.Comment: 4 pages, 2 figure, proceedings of the Conference "At the edge of the Universe", Sintra Portugal, October 2006. To be published on the Astronomical Society of the Pacific Conference Series (ASPCS

    Literacy practices of primary education children in Andalusia (Spain): a family-based perspective

    Get PDF
    Primary school children develop literacy practices in various domains and situations in everyday life. This study focused on the analysis of literacy practices of children aged 8–12 years from the perspec- tive of their families. 1,843 families participated in the non-experimental explanatory study. The children in these families speak Spanish as a first language and are schooled in this language. The instrument used was a self-report questionnaire about children’s home-literacy practices. The data obtained were analysed using categorical principal components analysis (CATPCA) and analysis of variance (ANOVA). The results show the complex relationship between literacy practices developed by children in the domains of home and school and the limited development of a literacy-promoting ‘third space’. In conclusion, the families in our study had limited awareness of their role as literacy- promoting agents and thought of literacy learning as restricted to formal or academic spaces

    SoTL Best Practices: 21st Century College Students’ Perceptions of Learning Styles and Instructional Design Materials’ Influence on the Successful Completion of Assignments

    Get PDF
    There is a long history of interest in individual differences in learning styles. Beginning in the 1960s, academic research endeavors began examining the concept of personalizing teaching as the best scholarship of teaching and learning best practice (SoTL). This current series of interconnected empirical studies take a fresh look at SoTL by examining students’ self-perception of their learning styles and whether their perceptions relate to how they learn. Today’s college students are growing up in the information age of the 21st Century. Many educators believe that a best practice is to focus on delivering personalized instructional material through technology. Thus, the current mixed methods study adds value to SoTL research by examining these concepts through a representative sample of the subject university in the United States. To assure the reliability and validity of the complex series of three integrated studies, research assistants were trained by a researcher experienced in experimental and survey designs. Data were analyzed using SPSS27¼. The study\u27s findings indicated that focusing instructional materials on individual learning styles does not equate to learning success; in fact, the data showed no relationship. The data showed that a combined instructional delivery methodology (kinetic and audio) had a positive influence on learning success. The findings revealed that explicit instructions with or without audio were the most effective in leading to students’ ability to follow instructions successfully. Managing students’ self-perceptions of learning styles is important to assure successful learning experiences. Findings, conclusions, implications, recommendations, and limitations are presented herein

    Spontaneous deterministic side-branching behavior in phase-field simulations of equiaxed dendritic growth

    Get PDF
    The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see, e.g., M. E. Glicksman, Metall. Mater. Trans A 43, 391 (2012)]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here, we present simulations that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Spontaneous side-branching seems to be favoured by high undercoolings and by intermediate values of the capillary anisotropy, with the most branched structures being obtained for an anisotropy strength of 0.03. From an analysis of the tangential thermal gradients on the solid-liquid interface, the mechanism for side-branching appears to have some similarities with the deterministic model proposed by Glicksman

    Field testing an acoustic lighthouse : Combined acoustic and visual cues provide a multimodal solution that reduces avian collision risk with tall human-made structures

    Get PDF
    Billions of birds fatally collide with human-made structures each year. These mortalities have consequences for population viability and conservation of endangered species. This source of human-wildlife conflict also places constraints on various industries. Furthermore, with continued increases in urbanization, the incidence of collisions continues to increase. Efforts to reduce collisions have largely focused on making structures more visible to birds through visual stimuli but have shown limited success. We investigated the efficacy of a multimodal combination of acoustic signals with visual cues to reduce avian collisions with tall structures in open airspace. Previous work has demonstrated that a combination of acoustic and visual cues can decrease collision risk of birds in captive flight trials. Extending to field tests, we predicted that novel acoustic signals would combine with the visual cues of tall communication towers to reduce collision risk for birds. We broadcast two audible frequency ranges (4 to 6 and 6 to 8 kHz) in front of tall communication towers at locations in the Atlantic migratory flyway of Virginia during annual migration and observed birds’ flight trajectories around the towers. We recorded an overall 12–16% lower rate of general bird activity surrounding towers during sound treatment conditions, compared with control (no broadcast sound) conditions. Furthermore, in 145 tracked “at-risk” flights, birds reduced flight velocity and deflected flight trajectories to a greater extent when exposed to the acoustic stimuli near the towers. In particular, the 4 to 6 kHz stimulus produced the greater effect sizes, with birds altering flight direction earlier in their trajectories and at larger distances from the towers, perhaps indicating that frequency range is more clearly audible to flying birds. This “acoustic lighthouse” concept reduces the risk of collision for birds in the field and could be applied to reduce collision risk associated with many human-made structures, such as wind turbines and tall buildings

    Redshift Evolution in the Iron Abundance of the Intracluster Medium

    Full text link
    Clusters of galaxies provide a closed box within which one can determine the chemical evolution of the gaseous baryons with cosmic time. We studied this metallicity evolution in the hot X-ray emitting baryons through an analysis of XMM-Newton observations of 29 galaxy clusters in the redshift range 0.3 < z < 1.3. Taken alone, this data set does not show evidence for significant evolution. However, when we also include a comparable sample of 115 clusters observed with Chandra (Maughan et al. 2008) and a lower redshift sample of 70 clusters observed with XMM at z < 0.3 (Snowden et al. 2008), there is definitive evidence for a decrease in the metallicity. This decrease is approximately a factor of two from z = 0 to z \approx 1, over which we find a least-squares best-fit line Z(z) / Z_{\odot} = (0.46 \pm 0.05) - (0.38 \pm 0.03)z. The greatest uncertainty in the evolution comes from poorly constrained metallicities in the highest redshift bin
    • 

    corecore