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Spontaneous deterministic side-branching behavior in phase-field

simulations of equiaxed dendritic growth

Andrew M Mullis

Institute for Materials Research, University of Leeds, Leeds LS2-9JT, UK.

The accepted view on dendritic side-branching is that side-branches grow as the

result of selective amplification of thermal noise and that in the absence of such

noise dendrites would grow without the development of side-arms. However,

recently there has been renewed speculation about dendrites displaying

deterministic side-branching [see e.g. ME Glicksman, Metall. Mater. Trans A 43

(2012) 391]. Generally, numerical models of dendritic growth, such as phase-field

simulation, have tended to display behaviour which is commensurate with the

former view, in that simulated dendrites do not develop side-branches unless noise

is introduced into the simulation. However, here we present simulations that show

that under certain conditions deterministic side-branching may occur. We use a

model formulated in the thin interface limit and a range of advanced numerical

techniques to minimise the numerical noise introduced into the solution, including

a multigrid solver. Spontaneous side-branching seems to be favoured by high

undercoolings and by intermediate values of the capillary anisotropy, with the

most branched structures being obtained for an anisotropy strength of 0.03. From

an analysis of the tangential thermal gradients on the solid-liquid interface, the

mechanism for side-branching appears to have some similarities with the

deterministic model proposed by Glicksman.

1. Introduction

One of the most fundamental and all pervasive microstructures produced during the
solidification of metals is the dendrite. The dendrite is a prime example of a pattern forming
system where complex morphologies arise from initially homogeneous conditions due to the
highly non-linear response of the controlling system. The formation of the secondary (and
higher order) side-branches has been an area of particular interest as it is these secondary arms
that give dendrites their characteristic morphology.

Imaging of dendritic growth in transparent analogue casting systems, such as succinonitrile [1]

and xenon [2], show that close to the tip region the dendrite is apparently free from side-

branching. Moving away from the tip small oscillations are initiated which grow as they

move down the dendrite trunk. Initially the spacing of these perturbations is uniform.

However, as amplification of the initial perturbations proceeds the process becomes

competitive with faster growing side-arms becoming dominant, leading to a less uniform

spacing. Eventually coarsening becomes dominant, with side-arms of higher curvature being

preferentially re-melted [3, 4].

A number of measures have been proposed to quantify the side-branch morphology of

dendritic structures. The simplest, and often the only measure that can be applied to as-

solidified materials, is the secondary arm spacing, 2. However, when the growing dendrite

can be imaged in situ a far greater range of measures may be applied. The most direct is sbz ,

which is the mean distance along the trunk (in units of ) at which the amplitude of the side-

branching becomes equal to being the radius of curvature at the dendrite tip. Other
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measures which have been used in the literature [2, 5] to characterise dendritic structures

include the fractal dimension, shape parameterization of the inner and outer side-branch

envelopes, projection area and contour length.

Probably the most carefully controlled study of dendritic growth to be undertaken is the

Isothermal Dendrite Growth Experiment [6] (IDGE), in which the onset of side-branching, as

measured by the distance to the first detectable side-branch, was determined for high purity

succinonitrile under microgravity conditions. This was determined as being at (11.8  1.7).
In a control experiment, which was identical except that it was performed under terrestrial

gravity, the same measurement yielded (12.7  2.3). Bisang & Bilgram [2] have measured

sbz for xenon dendrites under terrestrial conditions, finding )35.17(sb z . This figure is

somewhat higher than that found during IDGE due to the different methodologies applied, the

first detectable side-branch having an amplitude significantly less than 1, wherein the two

data sets are probably mutually consistent.

The generally accepted theory of side-branch formation during dendritic growth is that side-

branches grow due to the selective amplification of thermally induced noise at the solid-liquid

interface. Models for this process, in the framework of microscopic solvability theory, have

been put forward by Langer [7, 8] and by Brener & Tempkin [9]. Such models appear to be

supported by a number of phase-field simulations, in which it has been observed that

dendrites grow without side-branches unless noise is introduced at the solid-liquid interface

[10]. Where noise is introduced it is observed that the extent of side-branching (measured for

instance by sbz ) increases with both the amplitude of the noise and with the undercooling (or

equivalently, velocity) at which the dendrite grows [11, 12], but decreases as the capillary

anisotropy is increased.

However, models of deterministic side-branching have been proposed, such as that by [13], in

which the dendrite experience repeated period doubling of an initially high frequency side-

branching instability at the tip. Recently, based upon a re-evaluation of the IDGE data,

Glicksman [14, 15] has proposed that dendrites may undergo deterministic side-branching.

The proposition is that capillary mediated differences in the temperature along the solid-liquid

interface give rise to heat currents (termed bias-fields) which lead to the onset of side-

branching, even in the absence of thermally induced noise. It has been pointed out [16] that if

an anisotropic capillary mediated temperature distribution is calculated for an exactly elliptic

dendrite (although the same holds true for an exactly parabolic dendrite), a temperature

inversion will arise near the tip for anisotropies exceeding 0.011, that is the lowest

temperature is attained not at the tip, as would be the case for an isotropic surface energy, but

at some point downstream of the tip. Moreover, even if the interface temperature decreases

monotonically moving back from the dendrite tip, due to the curvature of the interface, the

tangential thermal gradient is not unidirectional. It is proposed that where the bias-field

exhibits a root, i.e. where the direction of the thermal gradient reverses, an inflection to the

interface shape occurs. At this point there is an inward heat flow from both the dendrite tip

and the downstream region. It is at this point at which deterministic side-branching is initiated.

A geometrical analysis [17] shows these bias fields to be 4
th
-order phenomenon in the

interface shape, which may help explain the paucity of experimental evidence in support of

the phenomena. As such they may be analogous to the surface species diffusion described by

Mullins to explain the kinetics of thermal grooving at a grain boundary [18].
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Contrary to most phase-field studies, Wang et al. [19] did find evidence of side-branching in

the absence of artificially introduced noise for dendrites grown at the high undercooling of

sys = 0.8, apparently in support of the ideas proposed by [14, 15]. Here sys is the

dimensionless bulk undercooling, sys = CpT/H, H being the latent heat on fusion and Cp the

specific heat and would define the temperature boundary condition  = -sys. However, such
investigations are potentially fraught with pit-falls. In particular, unless considerable care is

taken it is difficult to ensure that numerical noise is not introduced into the solution via the

computational scheme employed. This is particularly the case when explicit solution schemes

of the forward Euler type are used. Moreover, if a fixed (stability limited) time-step is utilised,

the amplitude of the introduced noise increases at high undercooling due to lose of accuracy

as the dendrite grows further per time-step.

In this paper we re-evaluate the findings of [19], using a thermal phase-field model

formulated using a range of advanced numerical techniques designed to minimise the noise

introduced in to the solution by the numerical scheme. In particular, we use an implicit time-

stepping scheme with a non-linear multigrid solver which is a particularly efficient way of

obtaining low noise solutions to a set of coupled partial differential equations. Typically, a

Jacobi or Gauss-Seidel iteration is efficient at smoothing noise at wavelengths comparable to

the mesh spacing, h, but very inefficient at smoothing noise at longer wavelengths, which

therefore tends to remain in the solution. In multigrid, the restriction of the solution to

progressively coarser nested meshes means that noise at all wavelengths is efficiently

smoothed. Moreover, the time-step in the implicit solution is limited by the accuracy of the

solution, not its stability. Therefore, by employing a dynamically adjusting variable time-step

determined by a series of error estimators based upon the norm of the residuals in the solution

we can ensure that the same level of accuracy is obtained in all solutions irrespective of the

growth rate.

2. Computational Model

The model adopted here is based upon that of [ 20 ] in which, following non-

dimensionalization against characteristic length and time scales, W0 and 0, the evolution of

the phase-field, , and the dimensionless temperature field, , are given by
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where  is the angle between the principal growth direction and the outward pointing normal

to the solid-liquid interface (the  = 0 isoline), d0 is the chemical capillary length, kE is the

equilibrium partition coefficient,  is the dimensionless thermal diffusivity and  is a

coupling parameter given by  = /a2 = a1W0/d0 with a1 and a2 taking the values 52/8 and

0.6267 respectively [21].For 4-fold growth, A() = 1 + .cos(4), where  is a measure of the

anisotropy strength.



4

The governing equations are discretized using a finite difference approximation based upon a

quadrilateral, non-uniform, locally-refined mesh with equal grid spacing in both directions.

Unlike the implementation of most phase-field models, which use spatially second order

difference approximations, here we have used fourth order approximations in order to capture

any bias-field effects, which are themselves proposed to be spatially fourth order [17]. The

first and second differentials are calculated using a (spatially) fourth order accurate 9-point

stencil, while a compact, 17-point, fourth order stencil has been used for the Laplacian terms,

compact stencils being superior in their ability to reduce the mesh induced [22] anisotropy.

The stencils, and the weights associated with each point therein, are illustrated graphically in

Fig. 1. To ensure sufficient mesh resolution around the interface region local mesh refinement

(coarsening) is employed when the weighted sum of the gradients of  and  exceeds (falls

below) some predefined value.

Figure 1. 9 and 17-point finite difference stencils used to evaluate the second

differentials and Laplacian terms in Equations (1-2).

The most commonly employed temporal discretization schemes utilised in phase-field

modelling are explicit methods such as the Forward Euler scheme, which is first order

accurate in time. Rewriting Equations (1) and (2) in operator form
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The implementation of explicit methods is straight forward, but they suffer from a number of

restrictions, including a time-step that is limited by stability, rather than accuracy, and a

tendency to introduce numerical noise into the solution of the set of PDE’s being considered.

In contrast, implicit methods may be designed to be unconditionally stable, wherein the time-

step may be chosen in order to achieve a desired level of accuracy in the solution. Here, we

have used the second order Backward Difference Formula (BDF2), which is an implicit linear

2-step method which leads to second order convergence in time. It can be shown that the

BDF2 method is A-stable [23], and is therefore suitable for stiff systems of differential

equations. With a variable time step of ratio, r = tk/tk-1, the BDF2 equivalent of Equ. (4) is
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The choice of appropriate time steps is based upon a set of local error estimators
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Each of the error estimators is compared against a corresponding tolerance ( 
TolD , 

TolD ) and if

at any time-step the local temporal error kD = min( 
TolD , 

TolD )  TolD the time step is

accepted and the next time-step is increased whereas if Tolk DD  the step is rejected and

retaken with a smaller time-step. In this way the accuracy of the solution is maintained, even

when the solidification rate increases, as for instance at high undercooling or during the initial

transient when the seed used to nucleate solidification is coming into thermal equilibrium

with the domain. The rate at which the time-step should grow can be estimated from
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where p is the order of the scheme, which is 2 for the BDF2 method.

When using implicit time-stepping methods it is necessary to solve a very large, but sparse,

system of non-linear algebraic equations at each time-step. Multigrid methods are among the

fastest available solvers for such systems and in this work we apply the non-linear

generalization known as FAS (full approximation scheme [24]). The local adaptivity is

accommodated via the multilevel algorithm originally proposed by Brandt [ 25 ]. The

interpolation operator is bilinear while injection is used for the restriction operator. For

smoothing the error we use a fully-coupled nonlinear weighted Gauss-Seidel iteration where

the number of pre- and post-smoothing operations required for optimal convergence is

determined empirically. Full details of the numerical scheme are given in [26, 27].

The resultant dendrite shapes are characterised by two length scales, the actual and parabolic

radii of curvature at the tip, a and para respectively. Here, if (X, Y) is the locus of the solid-
liquid interface, a is given, for a dendrite growing along the x-direction, by
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For a dendrite with tip location X0, the parabolic tip radius is given by fitting a curve of the

form
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)(2 0para
2
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to the down-stream region of the dendrite, typically the region 1.5a – 4.0a behind the tip (a
is used in determining the range for the fitting as it can be known prior to determining para).
The procedure for calculating para is given in more detail in [20].

3. Numerical Results

Figure 2 compares the morphology of the solid-liquid interface for dendrites grown at sys =
0.6875 and sys = 0.8000, the other computational parameters for these simulations being  =

1,  = 0.03 and h = 1.24d0. The domain size, , is [-2500d0:2500 d0]
2
and the initial seed with

radius 8d0 is located at the centre of the domain. It is apparent that from the plots that

spontaneous side-branching is occurring at the higher undercooling but not at lower

undercooling. While superficially these results look similar to those of [19] there are two

important differences. Firstly, although [19] present images (e.g. their Figs. 2a and 3a)

showing equiaxed dendrites with 4-fold symmetry, their simulations are in fact conducted on

a quarter domain with the equiaxed dendrite being created by rotating and replicating a single

primary branch. In contrast, the equiaxed dendrite shown in this work (Fig. 2b) is nucleated

from a seed in the middle of the domain. Each of the primary arms shown has therefore grown

independently and the fact that each shows an identical branching pattern in itself represents

strong evidence of a deterministic branching mechanism as numerical noise, by its random

nature, would give rise to different patterns on each primary branch. Secondly, in [19] very

low anisotropies are used in order to obtain branching. In their work strong branching is

evident at  = 0.005, with branching becoming almost indiscernible at  = 0.02. It is well

known that noise induced side-branching is suppressed by strong capillary anisotropy. In

contrast the branched dendrite shown in Fig. 2b is grown at the relatively high anisotropy of

 = 0.03. For reference the tip radii for the two simulations being considered here are a =

13.6d0, para = 25.0d0 for sys = 0.6875 and a = 11.8d0, para = 20.9d0 for sys = 0.8000.

Figure 2. Example phase-field dendrite morphologies at a system undercooling of

(a) sys = 0.6875, without side-branching and (b) sys = 0.8000, displaying

spontaneous side branching.
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The effect of anisotropy on the tendency towards spontaneous side-branching is explored in

Fig. 3. We use two different measures for this, on the left-hand y-axis we plot the

dimensionless undercooling, sys, required for the onset of spontaneous side-branching, while

on the right-hand y-axis is plotted the measured value of sbz determined at a fixed

undercooling of sys = 0.8000. Here, sbz is defined with respect to the parabolic tip radius,

para, as this is more readily comparable to the tip radius that can be measured in experiments

on transparent analogue systems. The outcome is somewhat contradictory. We find that the

minimum value of sys required for the onset of spontaneous side-branching, which we denote

by onset, decreases monotonically with increasing , but that the most branched structures (as

measured by sbz ) occur at intermediate values of . Indeed, it is apparent from the plot of sbz

as a function of  that the trend is approximated well by two linear trend lines, intersecting at

 = 0.03. This suggests that the mechanism responsible for the observed side-branching is not

the same as operating in the simulations reported by [19] and is not related to the

amplification of numerical noise, wherein side-branching would become more extensive (i.e.

both the minimum value of sys and the measured value of sbz would decrease) as  decreases.
A potential explanation for this observation will be proposed towards the end of this

manuscript.

Figure 3. The undercooling, onset, at which spontaneous side-branching is first

observed, and the extent of side-branching, as measure by sbz , both plotted as a

function of the imposed anisotropy, .

To investigate the mechanism for side-branch formation in these simulated dendrites and to

explore the similarities with the deterministic side-branching mechanism proposed in [14, 15]

it is instructive to look in some detail at the temperature distribution at the dendrite tip. Figure

4 compares (a) the temperature distribution obtained when an anisotropic surface energy is

imposed upon an exactly parabolic needle crystal with (b) the temperature distribution

obtained from a phase-field dendrite (b). In both cases  = 0.03 and in the phase-field

simulation sys = 0.6875. The temperature distribution for the parabolic needle was obtained

by (i) generating an exact parabola; (ii) calculating its curvature and hence the temperature at

its interface; (iii) bringing the shape into thermal equilibrium, treating the temperature

calculated in (ii) above as a Dirichlet boundary condition on the solid-liquid interface. It can
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be observed that in the case of the exactly parabolic needle there is indeed a temperature

inversion, with the lowest temperature occurring either side of the tip. In contrast, for the

phase-field dendrite no such temperature inversion is observed, with the tip being the region

with the lowest temperature. In deed, in no phase-field simulation, irrespective of the

undercooling at which the dendrite is grown or the anisotropy imposed upon the system, have

we observed a temperature inversion on the solid-liquid interface, with the tip region always

being the region lowest temperature.

Figure 4. Thermal profile in the tip region of (a) an exactly parabolic dendrite

with an anisotropic surface energy ( = 0.03) and (b) a phase-field dendrite

growing with a surface energy anisotropy of  = 0.03.

The absence of a temperature inversion near the tip of the phase-field dendrite appears to be

because the shape of the dendrite tip alters in response to the imposed anisotropy in such a

way that such an inversion is avoided. Specifically, as the anisotropy is increased the

curvature increases more rapidly as one approaches the tip than would be the case for an

equivalent exactly parabolic crystal. This can be seen most readily by comparing the actual

and parabolic radii of curvature, a and para respectively, for the phase-field dendrites. In

Figure 5 we plot the ratio para/a as a function of system undercooling and anisotropy. It can

be seen that the ratio para/a increases rapidly with increasing  while there is a much smaller

variation as a function of undercooling, i.e. that as the anisotropy increases the tip region

sharpens more rapidly than would be expected from the near parabolic down-stream shape,

thus avoiding a temperature inversion at the tip.

However, as pointed out in [14, 15], due to the curvature of the solid-liquid interface the

tangential thermal gradient evaluated on the interface may not be monotonic, even if the

temperature does decrease monotonically moving down-stream from the tip. For the phase-

field model, in which the temperature and phase fields are defined over the whole domain,

this tangential surface thermal gradient may be evaluated using standard methods for

directional derivatives, wherein ̂ may also be defined over the whole domain by,

2
ˆ








 xyyx

(11)
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However, we will consider only the values occurring on the  = 0 isoline, wherein the

definition is equivalent to that used in [14, 15]. Here the subscripts denote differentiation with

respect to x or y respectively. A plot of ̂ , non-dimensionalised against d0, as a function of

the distance downstream from the dendrite tip is shown in Fig. 6, for the dendrite not

displaying side-branching in Fig. 2a. The similarity in the form of the curve shown in Fig. 6,

calculated for a phase-field dendrite, with the profiles calculated analytically by Glicksman

[see e.g. Fig. 5 in Ref. 14] is remarkable. In particular, in both cases the curve has a turning

point somewhat downstream from the tip and it is this turning point in the tangential thermal

gradient which [14, 15] has associated with the deterministic side-branching mechanism. Note

that the co-ordinate system used here is different from that in [14, 15] in which an elliptic

geometry was considered.

Figure 5. Ratio of the parabolic to the actual tip radius as a function of

undercooling and anisotropy. The increase in the ratio, para/a, with increasing

anisotropy appear to be a consequence of the tip becomes progressively sharper,

relative to the down-stream parabolic profile.

In this particular case we have shown as an example the tangential thermal gradient, ̂ ,

corresponding to a dendrite that does not display spontaneous side-branching, although the

form of the curve in the near-tip region is similar, irrespective of whether side-branching is

well developed down-stream or not. The principal difference in the curves as either the

undercooling, sys, or the anisotropy, , is increased is that the minimum become deeper. This

is illustrated in Fig. 7 in which we give the magnitude, ̂ , of the minimum in the tangential

thermal gradient as a function of sys and . In absolute co-ordinates, (i.e. in units of d0), the

location of the minimum moves closer to the tip as either sys or  is increased, although this

appears to be related to a reduction in the characteristic length scale of the dendrite, as

measured by either a or para. In particular, when the distance is scaled against a, which
close to the tip is probably the most appropriate length scale, the minimum tends to occurs in

the range 0.10a – 0.15a, hence the use of a as the length scale on the x-axis in Fig. 7.

Although there is some scatter within the range 0.10a – 0.15a, there does not appear to be a

systematic trends with either undercooling nor anisotropy, and we believe the scatter may be
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due to the extent to which the tip is resolved on the mesh and the interpolation of the location

of the  = 0 isoline.

Figure 6. The tangential thermal gradient calculated on the solid-liquid interface

near the tip-region for a dendrite with sys = 0.6875 (Fig. 2a above).

Figure 7. The magnitude of the minimum in the tangential thermal gradient,

calculated on the solid-liquid interface near the tip-region, as a function of

undercooling, sys, and anisotropy, .

Given that the tangential thermal gradient on the interface has a similar form for all of the

phase-field dendrites calculated, but that only those growing at high undercooling go on to

develop spontaneous side-branches, it is interesting to consider whether the tangential thermal

gradient leads to any perturbation of the dendrite shape close to the tip, as proposed in [14,

15]. This will help elucidate whether these effects are thereby having an effect leading to

observable side-branching further downstream. To determine this the following procedure has

been adopted. The tip region of the dendrite (from X – X0 = 0 to X - X0  -160d0) has been

fitted with an order n polynomial, where n is 4-5. This is of sufficiently high order to capture
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the non-parabolic tip shape but not of sufficiently high order to capture perturbations to the

tip-shape from side-branching. We have then calculated the residuals between the fit and the

original data to identify small perturbations to the dendrite shape. The results of this analysis

for sys = 0.6875 (a dendrite not showing spontaneous side-branching) are shown in Fig. 8,

wherein it can be seen that there is indeed a cyclic perturbation to the dendrite tip shape.

Similar perturbations are also found where the dendrite does show distinct downstream side-

branching, although unlike the case shown in Figure 8, the amplitude of the perturbations

tends to increase, rather than decrease, with distance downstream. As with the tangential

thermal gradient, the form of this curve is similar irrespective of either the undercooling or

anisotropy at which the dendrite is growing, although the magnitude of the shape

perturbations, as measured by the residual, appears to increase as the magnitude of the

tangential gradient increases (i.e. with increasing undercooling or anisotropy).

Figure 8. Residual between the actual shape of a phase-field dendrite grown at

sys = 0.6875 and an order 4 polynomial fit to the tip region. This procedure is

very efficient at showing up small cyclic perturbations to the tip region.

We also note that the period of the final, well developed side-branches is almost exactly

double the period of the initial perturbation in all cases. In this respect there are interesting

parallels with the model of [13], in which a period doubling of the initial side-branching

instability was also identified. Moreover, for anisotropies of   0.030 (to the left of the

minimum in Fig. 3) there is no vestige of the eliminated perturbations in the final

microstructure. However, for  > 0.035 (to the right of the minimum in Fig. 3) we notice that

small vestiges of the initial perturbation remain, in the form of poorly developed side-

branches which are located in between the main, well-developed branches. An example of this

type of morphology is shown in Fig. 9 for a dendrite grown with an anisotropy of  = 0.045

and at an undercooling of sys = 0.8. The subsidiary side-branches are indicated with arrows

for clarity. Although it is well established that secondary arm coarsening proceeds by the

dissolution of unfavourable branches from the tip back towards the trunk [28, 29], this

appears not to be the case here, as the branches never fully develop. Instead, these appear to

be remnants indicative of a period doubling instability as described by [13].



12

Figure 9. Spontaneous side branching pattern for a dendrite with  = 0.045 and

sys = 0.8. The spacing of the well developed side-branches in twice the

wavelength of the perturbations at the tip with small vestiges of side-branches

(indicates with arrows) the only indication of the shorter wavelength of the initial

perturbation.

4. Discussion

The overall picture that emerges seems to be as follows;

1) Using a spatially 4
th
-order accurate phase-field model it can be shown that under

certain circumstance some, but by no means all, simulated dendrites will display

spontaneous, deterministic side-branching.

2) Due to the inclusion of a low-noise multigrid solver we can have reasonable

confidence that this side branching is not due to the amplification of numerical noise.

3) The occurrence of spontaneous side branching is restricted to high undercooling.

4) The affect of increasing the anisotropy is quite subtle. If we measure the undercooling

at which spontaneous side-branching can be first observed we would conclude that

high anisotropy favours spontaneous side-branching. Conversely, if we measure the

extent of side-branching at fixed undercooling (for instance by sbz ), we would

conclude that intermediate anisotropy favours spontaneous side-branching. Neither

result is compatible with the amplification of numerical noise.

5) If we calculate a low order polynomial fit (n = 4 – 5) to the dendrite tip region, cyclic

perturbations to the dendrite shape appear to occur all the way up to the tip. This

appears to be true irrespective of whether the dendrite goes on to develop visible side-

branching or not.

6) If we calculate the tangential thermal gradient along the solid-liquid interface ( = 0

isoline) of the dendrite in the near-tip region we find that such gradients have a form

very similar to those calculated analytically by Glicksman [14, 15], which he has
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postulated gives rise to deterministic side-branching during the growth of anisotropy

free elliptic dendrite fragments.

We believe the above observations may be reconciled in the following manner. Where we

have previously introduced noise into phase-field simulations to generate side-branching [11]

we observe that a critical amplitude exists and that the noise introduced must have an

amplitude exceeding this critical value if observable side-branched are to develop. The value

of this critical amplitude increases with increasing anisotropy. We postulate that the bias-

fields introduced by Glicksman are a perturber of the interface shape, that is they act as a

source of deterministic ‘noise’ on the solid-liquid interface. The amplitude of this noise, i.e.

the magnitude of ̂ , increases with increasing undercooling, hence the tendency for

deterministic side-branching to be more readily observed at high undercooling. As the

anisotropy is increased the amplitude of the noise also increases, but so does the ability of the

dendrite to resist side-branching. This could be either due to the a threshold value that the

noise must exceed increasing with increasing anisotropy or due to the rate of amplification of

small interface perturbations decreasing with increasing anisotropy. What we are seeing in

Fig. 3 with regard to sbz would thus be a result of a competition between a noise whose

amplitude were increasing with anisotropy and an amplification threshold (rate) that were

increasing (decreasing) with increasing anisotropy. This may also be responsible for the

difference between the morphology of branched dendrites with  > 0.035, in which small

vestiges of intermediate side-branches are present reflecting the doubling of the initial period

of the tip perturbation and those with   0.030, in which this period doubling occurs without

leaving remnant side-branches.

The model proposed here therefore has a common underlying principle to the bias-field model

proposed by Glicksman, but also some key differences. In particular, Glicksman postulates

that deterministic side-branching may occur at all undercoolings, which is not consistent with

the results presented here where such side-branching is restricted to high undercoolings. We

believe that the origin of this discrepancy is that in the calculations presented by Glicksman,

anisotropy is either absent, or is not included in a consistent manner. By this we mean that

even when a temperature distribution corresponding to an anisotropic surface energy is

considered, it is then imposed upon a simple model dendritic shape, rather than the free

boundary shape calculated from the specified surface energy. We can see from Fig. 5 and

from the argument above, that increasing the anisotropy strength has two competing effects,

these being to increase the size of the shape perturbation at the dendrite tip and to increase the

resistance of the dendrite to amplification of these perturbations. In the (unphysical) limit of

vanishing anisotropy it is open to question which effect dominates. Conversely, increasing the

undercooling increase the size of the shape perturbation at the dendrite tip and may also

reduce the effective anisotropy. Consequently, if the ability of the dendrite to resist the

amplification of small perturbation into full side-branches vanishes with vanishing anisotropy

but the size of the perturbations at the tip does not, it would be expected that an isotropic

calculation would conclude that side branching could be observed at all undercoolings.
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5. Summary and Conclusions

By using a phase-field model incorporating a range of advanced numerical techniques

designed to achieve high solution accuracy with minimal induced numerical noise we have

been able to demonstrate that under certain circumstances dendrites may undergo spontaneous,

deterministic side-branching. Calculation of the tangential thermal gradients on the phase-

field solid-liquid interface appears to be consistent with the capillary mediated ‘bias-field’

branching mechanism proposed by Glicksman [14, 15]. The occurrence of such side-

branching appears to be confined to relatively high undercooling/growth velocity. We suggest

that this mechanism probably acts alongside the more conventionally accepted thermal noise

mechanism for generating the initial perturbations that give rise to dendritic side-branching. If

so, this could potentially suggest an interesting area of investigation in experimental

solidification, exploring whether it is possible to observe a transition from stochastic to

deterministic side-branching in deeply undercooled metallic melts or analogue casting

systems.
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