236 research outputs found

    Leptoproduction of J/psi

    Full text link
    We study leptoproduction of J/ψJ/\psi at large Q2Q^2 within the nonrelativistic QCD (NRQCD) factorization formalism. The cross section is dominated by color-octet terms that are of order αs\alpha_s. The color-singlet term, which is of order αs2\alpha^2_s, is shown to be a small contribution to the total cross section. We also calculate the tree diagrams for color-octet production at order αs2\alpha^2_s in a region of phase space where there is no leading color-octet contribution. We find that in this regime the color-singlet contribution dominates. We argue that non-perturbative corrections arising from diffractive leptoproduction, higher twist effects, and higher order terms in the NRQCD velocity expansion should be suppressed as Q2Q^2 is increased. Therefore, the color-octet matrix elements and and can be reliably extracted from this process. Finally, we point out that an experimental measurement of the polarization of leptoproduced J/ψJ/\psi will provide an excellent test of the NRQCD factorization formalism.Comment: 33 pages latex. 10 figures. Uses revtex, epsf, and rotate macros. This paper is also available via the UW phenomenology archives at http://phenom.physics.wisc.edu/pub/preprints

    Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    Get PDF
    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences

    The Breathing Mode in Extended Skyrme Model

    Full text link
    We study an extended Skyrme model which includes fourth and sixth-order terms. We explore some static properties like the Δ\Delta-nucleon mass splitting and investigate the Skyrmion breathing mode in the framework of the linear response theory. We find that the monopole response function has a pronounced peak located at ∼\sim 400 MeV, which we identify to the Roper resonance N(1440)N(1440). As compared to the standard one, the extended Skyrme model provides a more accurate description of baryon properties.Comment: 12 pages of plain Latex and 3 figures (available from the authors), preprint IPNO/TH 93-0

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    Virtual environment navigation with look-around mode to explore new real spaces by people who are blind

    Get PDF
    Background. This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. Methods. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. Results. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared to only 30% of the control group participants. Conclusion. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model

    High Performance Multicell Series Inverter-Fed Induction Motor Drive

    Get PDF
    This document is the Accepted Manuscript version of the following article: M. Khodja, D. Rahiel, M. B. Benabdallah, H. Merabet Boulouiha, A. Allali, A. Chaker, and M. Denai, ‘High-performance multicell series inverter-fed induction motor drive’, Electrical Engineering, Vol. 99 (3): 1121-1137, September 2017. The final publication is available at Springer via DOI: https://doi.org/10.1007/s00202-016-0472-4.The multilevel voltage-source inverter (VSI) topology of the series multicell converter developed in recent years has led to improved converter performance in terms of power density and efficiency. This converter reduces the voltage constraints between all cells, which results in a lower transmission losses, high switching frequencies and the improvement of the output voltage waveforms. This paper proposes an improved topology of the series multicell inverter which minimizes harmonics, reduces torque ripples and losses in a variable-speed induction motor drive. The flying capacitor multilevel inverter topology based on the classical and modified phase shift pulse width modulation (PSPWM, MPSPWM) techniques are applied in this paper to minimize harmonic distortion at the inverter output. Simulation results are presented for a 2-kW induction motor drive and the results obtained demonstrate reduced harmonics, improved transient responses and reference tracking performance of the voltage in the induction motor and consequently reduced torque ripplesPeer reviewe

    Combined theoretical and experimental study of the transmission of tilted ion beams through macroscopic conical glass capillaries

    Get PDF
    The transmission as a function of the tilt angle of a 3 keV Ar+ ion beam through a conical macroscopic glass capillary is studied theoretically and experimentally. It was found that the charge patches which are responsible for the ion guiding also compress the beam spatially in the direction orthogonal to the patches, resulting into an enhancement of the transmission with increasing tilt angle

    Neural Correlates of Visual Aesthetics – Beauty as the Coalescence of Stimulus and Internal State

    Get PDF
    How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of judging for beauty as opposed to other judgments. Our group questioned whether this approach is sufficient. In our view, a brain region that assesses beauty should show beauty-level-dependent activation during the beauty judgment task, but not during other, unrelated tasks. We therefore performed an fMRI experiment in which subjects judged visual textures for beauty, naturalness and roughness. Our focus was on finding brain activation related to the rated beauty level of the stimuli, which would take place exclusively during the beauty judgment. An initial whole-brain analysis did not reveal such interactions, yet a number of the regions showing main effects of the judgment task or the beauty level of stimuli were selectively sensitive to beauty level during the beauty task. Of the regions that were more active during beauty judgments than roughness judgments, the frontomedian cortex and the amygdala demonstrated the hypothesized interaction effect, while the posterior cingulate cortex did not. The latter region, which only showed a task effect, may play a supporting role in beauty assessments, such as attending to one's internal state rather than the external world. Most of the regions showing interaction effects of judgment and beauty level correspond to regions that have previously been implicated in aesthetics using different stimulus classes, but based on either task or beauty effects alone. The fact that we have now shown that task-stimulus interactions are also present during the aesthetic judgment of visual textures implies that these areas form a network that is specifically devoted to aesthetic assessment, irrespective of the stimulus type

    Rapid and Reversible Recruitment of Early Visual Cortex for Touch

    Get PDF
    The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex.We investigated the effect of sudden, complete and prolonged visual deprivation (five days) in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS) impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours.Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid, early plastic changes, which presumably can lead, if sustained and reinforced, to slower developing, but more permanent structural changes, such as the establishment of new neural connections in the blind
    • …
    corecore