28 research outputs found

    The Spider Effect: Morphological and Orienting Classification of Microglia in Response to Stimuli in Vivo

    Get PDF
    The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells

    Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury

    Get PDF
    Microglia, the immune cells of the central nervous system, are attracted to sites of injury. The injury releases adenosine triphosphate (ATP) into the extracellular space, activating the microglia, but the full mechanism of release is not known. In glial cells, a family of physiologically regulated unpaired gap junction channels called innexons (invertebrates) or pannexons (vertebrates) located in the cell membrane is permeable to ATP. Innexons, but not pannexons, also pair to make gap junctions. Glial calcium waves, triggered by injury or mechanical stimulation, open pannexon/innexon channels and cause the release of ATP. It has been hypothesized that a glial calcium wave that triggers the release of ATP causes rapid microglial migration to distant lesions. In the present study in the leech, in which a single giant glial cell ensheathes each connective, hydrolysis of ATP with 10 U/ml apyrase or block of innexons with 10 µM carbenoxolone (CBX), which decreased injury-induced ATP release, reduced both movement of microglia and their accumulation at lesions. Directed movement and accumulation were restored in CBX by adding ATP, consistent with separate actions of ATP and nitric oxide, which is required for directed movement but does not activate glia. Injection of glia with innexin2 (Hminx2) RNAi inhibited release of carboxyfluorescein dye and microglial migration, whereas injection of innexin1 (Hminx1) RNAi did not when measured 2 days after injection, indicating that glial cells’ ATP release through innexons was required for microglial migration after nerve injury. Focal stimulation either mechanically or with ATP generated a calcium wave in the glial cell; injury caused a large, persistent intracellular calcium response. Neither the calcium wave nor the persistent response required ATP or its release. Thus, in the leech, innexin membrane channels releasing ATP from glia are required for migration and accumulation of microglia after nerve injury

    Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system.

    No full text
    Small cells called microglia, which collect at nerve lesions, were tracked as they moved within the leech nerve cord to crushes made minutes or hours before. The aim of this study was to determine whether microglia respond as a group and move en masse or instead move individually, at different rates, and whether they move along axons directly to the lesion or take another route, such as along the edges of the nerve cord. Cell nuclei in living nerve cords were stained with Hoechst 33258 dye and observed under dim ultraviolet illumination using fluorescence optics, a low-light video camera, and computer-assisted signal enhancement. Muscular movements of the cord were selectively reduced by bathing in 23 mM MgCl2. Regions of nerve cord within 300 microns of the crush were observed for 2-6 hr. Only a fraction of microglia, typically less than 50%, moved at any time, traveling toward the lesion at speeds up to 7 microns/min. Cells were moving as soon as observation began, within 15 min of crushing, and traveled directly toward the lesion along axons or axon tracts. Movements and roles of leech microglia are compared with their vertebrate counterparts, which are also active and respond to nerve injury

    Modulation of Microglial form and Immune Function by Factors Released from Goldfish Optic Nerves

    No full text
    Activation of microglia is associated with neural damage and may aid repair of the CNS. To begin to investigate their role, microglia purified from mouse brain were grown in media conditioned (CM) by goldfish optic nerve (GFON), optic tectum (GFOT), vagal lobe, telencephalon and cerebellum, and medium conditioned by rat optic nerves (RON). Microglia maintained in GFON- or GFOT-CM assumed an ameboid morphology, whereas microglia grown in media conditioned by the other neural tissues produced long, crenellated processes that resembled the ramified microglial form. Microglia maintained in all types of CM functioned as antigen presenting cells in a MHC-restricted manner when tested on conalbumin-specific Thelper (Th) cells, except for microglia maintained in GFON-and GFOT-CM. These studies suggest that GFON, in contrast to RON, produces a substance(s) that affects microglial morphology and immune reactivity, and may promote the vigorous regeneration seen in Gfon after damage
    corecore