71 research outputs found

    The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria

    Get PDF
    Erv1 and Mia40 constitute the two important components of the disulfide relay system that mediates oxidative protein folding in the mitochondrial intermembrane space. Mia40 is the import receptor that recognizes the substrates introducing disulfide bonds while it is reduced. A key function of Erv1 is to recycle Mia40 to its active oxidative state. Our aims here were to dissect the domain of Erv1 that mediates the protein–protein interaction with Mia40 and to investigate the interactions between the shuttle domain of Erv1 and its catalytic core and their relevance for the interaction with Mia40. We purified these domains separately as well as cysteine mutants in the shuttle and the active core domains. The noncovalent interaction of Mia40 with Erv1 was measured by isothermal titration calorimetry, whereas their covalent mixed disulfide intermediate was analyzed in reconstitution experiments in vitro and in organello. We established that the N-terminal shuttle domain of Erv1 is necessary and sufficient for interaction to occur. Furthermore, we provide direct evidence for the intramolecular electron transfer from the shuttle cysteine pair of Erv1 to the core domain. Finally, we reconstituted the system by adding in trans the N- and C- terminal domains of Erv1 together with its substrate Mia40

    Impact of pre-transplant time on dialysis on survival in patients with lupus nephritis

    Get PDF
    Lupus nephritis (LN) is an important cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE) often leading to end-stage renal failure (ESRF) and necessitating renal transplantation (rTp). Optimal timing of rTp in SLE patients with ESRF is uncertain and could potentially affect survival. We investigated the time spent on dialysis before rTp and survival following rTp in a cohort of SLE patients. Retrospective analysis of all adult SLE patients receiving rTp over a 40-year period (1975–2015) in two tertiary UK centres. Cox proportional hazard regression and receiver operator curves (ROC) were used to determine the risk associated with time on dialysis before rTp and other potential predictors. Forty patients (age 35 ± 11 years, 34 female, 15 Caucasian, 15 Afro–Caribbean and 10 South Asian) underwent rTp. During a median follow-up of 104 months (IQR 80,145), eight (20%) patients died and the 5-year survival was 95%. Univariate analysis identified time on dialysis prior to rTp as the only potentially modifiable risk predictor of survival with a hazard ratio of 1.013 for each additional month spent on dialysis (95% CI = 1.001–1.026, p = 0.03). ROC curves demonstrated that > 24 months on dialysis had an adverse effect with sensitivity of 0.875 and specificity 0.500 for death. No other modifiable predictors were significantly associated with mortality, indicating that time on dialysis had an independent effect. Increased time on dialysis pre-transplantation is an independent modifiable risk factor of mortality in this cohort of patients with lupus nephritis

    Artificial selection for increased dispersal results in lower fitness

    Get PDF
    Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis

    The clinical course of ANCA small-vessel vasculitis on chronic dialysis

    Get PDF
    Antineutrophil cytoplasmic autoantibody (ANCA)-associated small-vessel vasculitis frequently affects the kidney. Here we describe the rates of infection, disease relapse, and death in patients with ANCA small-vessel vasculitis before and after end-stage renal disease (ESRD) in an inception cohort study and compare them to those of patients with preserved renal function. All patients had biopsy-proven ANCA small-vessel vasculitis. Fisher's exact tests and Wilcoxon rank sum tests were used to compare the characteristics by ESRD status. ESRD follow-up included time on dialysis with transplants censored. Over a median follow-up time of 40 months, 136 of 523 patients reached ESRD. ESRD was associated with new-onset ANCA small-vessel vasculitis in 51% of patients, progressive chronic kidney disease without active vasculitis in 43%, and renal relapse in 6% of patients. Relapse rates of ANCA small-vessel vasculitis, reported as episodes/person-year, were significantly lower on chronic dialysis (0.08 episodes) compared with the rate of the same patients before ESRD (0.20 episodes) or with patients with preserved renal function (0.16 episodes). Infections were almost twice as frequent among patients with ESRD on maintenance immunosuppressants and were an important cause of death. Given the lower risk of relapse and higher risk of infection and death, we suggest that immunosuppression be geared to patients with ESRD who present with active vasculitis

    Classification of antineutrophil cytoplasmic autoantibody vasculitides: The role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or proteinase 3 in disease recognition and prognosis

    Get PDF
    Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is a complex disease, with much debate about the utility of systems for classification and diagnosis. We compared three currently used classification systems in predicting disease prognosis

    Association of Silica Exposure with Anti-Neutrophil Cytoplasmic Autoantibody Small-Vessel Vasculitis: A Population-Based, Case-Control Study

    Get PDF
    Anti-neutrophil cytoplasmic autoantibodies (ANCA) are associated with a category of small-vessel vasculitis (SVV) with frequent glomerulonephritis. The goal of this study was to evaluate the association of lifetime silica exposure with development of ANCA-SVV, with particular attention to exposure dosage, intensity, and time since last exposure. A southeastern United States, population-based, case-control study was conducted. Case patients had ANCA-SVV with pauci-immune crescentic glomerulonephritis. Population-based control subjects were frequency-matched to case patients by age, gender, and state. Jobs were assessed in a telephone interview. Silica exposure scores incorporated exposure duration, intensity, and probability for each job and then were categorized as none, low/medium, or high lifetime exposure. Logistic regression models were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). Silica exposure was found in 78 (60%) of 129 case patients and in 49 (45%) of 109 control subjects. There was no increased risk for disease from low/medium exposure relative to no exposure (OR 1.0; 95% CI 0.4 to 2.2) but increased risk with high exposure (OR 1.9; 95% CI 1.0 to 3.5; P = 0.05). Crop harvesting was associated with elevated risk (OR 2.5; 95% CI 1.1 to 5.4; P = 0.03). However, both agricultural and traditional occupational sources contributed to the cumulative silica exposure scores; therefore, the overall effect could not be attributed to agricultural exposures alone. There was no evidence of decreasing by duration of time since last exposure. High lifetime silica exposure was associated with ANCA-SVV. Exposure to silica from specific farming tasks related to harvesting may be of particular importance in the southeastern United States. Interval of time since last exposure did not influence development of ANCA-SVV

    Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis

    Get PDF
    Mitohormesis is an adaptive response induced by a mild mitochondrial stress that promotes longevity and metabolic health in different organisms. This mechanism has been proposed as the cause of the increase in the survival in Coq7+/− (Mclk1+/−) mice, which show hepatic reduction of COQ7, early mitochondrial dysfunction and increased oxidative stress. Our study shows that the lack of COQ9 in Coq9Q95X mice triggers the reduction of COQ7, COQ6 and COQ5, which results in an increase in life expectancy. However, our results reveal that the hepatic CoQ levels are not decreased and, therefore, neither mitochondrial dysfunction or increased oxidative stress are observed in liver of Coq9Q95X mice. These data point out the tissue specific differences in CoQ biosynthesis. Moreover, our results suggest that the effect of reduced levels of COQ7 on the increased survival in Coq9Q95X mice may be due to mitochondrial mechanisms in non-liver tissues or to other unknown mechanisms.This work was supported by grants from Ministerio de Economía Competitividad, Spain, and the ERDF (Grant Number SAF2015-65786-R), from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (grant number P10-CTS-6133) and from the University of Granada (grant reference “UNETE”, UCE-PP2017-06). AHG is a “FPU fellow” from the Ministerio de Educación Cultura y Deporte, Spain. MLS was a predoctoral fellow from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. LCL was supported by the “Ramón y Cajal” National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643)

    Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster

    Get PDF
    The accumulation of dysfunctional mitochondria has been implicated in aging, but a deeper understanding of mitochondrial dynamics and mitophagy during aging is missing. Here, we show that upregulating Drp1—a Dynamin-related protein that promotes mitochondrial fission—in midlife, prolongs Drosophila lifespan and healthspan. We find that short-term induction of Drp1, in midlife, is sufficient to improve organismal health and prolong lifespan, and observe a midlife shift toward a more elongated mitochondrial morphology, which is linked to the accumulation of dysfunctional mitochondria in aged flight muscle. Promoting Drp1-mediated mitochondrial fission, in midlife, facilitates mitophagy and improves both mitochondrial respiratory function and proteostasis in aged flies. Finally, we show that autophagy is required for the anti-aging effects of midlife Drp1-mediated mitochondrial fission. Our findings indicate that interventions that promote mitochondrial fission could delay the onset of pathology and mortality in mammals when applied in midlife

    6-OHDA-induced dopaminergic neurodegeneration in <i>Caenorhabditis elegans</i> is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33

    Get PDF
    <div><p>Oxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting <i>Caenorhabditis elegans</i> dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the <u>t</u>rans<u>t</u>hyretin-<u>r</u>elated gene <i>ttr-33</i>. The only described <i>C</i>. <i>elegans</i> transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of <i>C</i>. <i>elegans</i> larvae and is predicted to be a secreted protein. TTR-33 protects <i>C</i>. <i>elegans</i> from oxidative stress induced by paraquat or H<sub>2</sub>O<sub>2</sub> at an organismal level. The increased oxidative stress sensitivity of <i>ttr-33</i> mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the <i>C</i>. <i>elegans</i> cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.</p></div

    Carnosine:can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?

    Get PDF
    The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide's influence on cellular ATP concentrations. Carnosine's ability to reduce the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge of carnosine's mode of action on human cells. © 2013 Hipkiss et al.; licensee Chemistry Central Ltd
    corecore