73 research outputs found

    Recognition of vitamin B metabolites by mucosal-associated invariant T cells

    Get PDF
    The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR a-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses

    IP-10 Levels as an Accurate Screening Tool to Detect Acute HIV Infection in Resource-Limited Settings.

    Get PDF
    Acute HIV infection (AHI) is the period prior to seroconversion characterized by high viral replication, hyper-transmission potential and commonly, non-specific febrile illness. AHI detection requires HIV-RNA viral load (VL) determination, which has very limited access in low-income countries due to restrictive costs and implementation constraints. We sought to identify a biomarker that could enable AHI diagnosis in scarce-resource settings, and to evaluate the feasibility of its implementation. HIV-seronegative adults presenting at the Manhiça District Hospital, Mozambique, with reported-fever were tested for VL. Plasma levels of 49 inflammatory biomarkers from AHI (n = 61) and non-HIV infected outpatients (n = 65) were determined by Luminex and ELISA. IP-10 demonstrated the best predictive power for AHI detection (AUC = 0.88 [95%CI 0.80-0.96]). A cut-off value of IP-10 ≥ 161.6 pg/mL provided a sensitivity of 95.5% (95%CI 85.5-99.5) and a specificity of 76.5% (95%CI 62.5-87.2). The implementation of an IP-10 screening test could avert from 21 to 84 new infections and save from US176,609toUS176,609 to US533,467 to the health system per 1,000 tested patients. We conclude that IP-10 is an accurate biomarker to screen febrile HIV-seronegative individuals for subsequent AHI diagnosis with VL. Such an algorithm is a cost-effective strategy to prevent disease progression and a substantial number of further HIV infections

    Bacterial deception of MAIT cells in a cloud of superantigen and cytokines

    No full text
    10.1371/journal.pbio.2003167PLoS Biology157e200316

    Ex-vivo analysis of human Natural Killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(-) subsets

    No full text
    Published Version© 2012 British Society for ImmunologyThe research outputs in this collection have been funded in whole or in part by the National Health and Medical Research Council (NHMRC).Our understanding of human type 1 natural killer T (NKT) cells has been heavily dependent on studies of cells from peripheral blood. These have identified two functionally distinct subsets defined by expression of CD4, although it is widely believed that this underestimates the true number of subsets. Two recent studies supporting this view have provided more detail about diversity of the human NKT cells, but relied on analysis of NKT cells from human blood that had been expanded in vitro prior to analysis. In this study we extend those findings by assessing the heterogeneity of CD4(+) and CD4(-) human NKT cell subsets from peripheral blood, cord blood, thymus and spleen without prior expansion ex vivo, and identifying for the first time cytokines expressed by human NKT cells from spleen and thymus. Our comparative analysis reveals highly heterogeneous expression of surface antigens by CD4(+) and CD4(-) NKT cell subsets and identifies several antigens whose differential expression correlates with the cytokine response. Collectively, our findings reveal that the common classification of NKT cells into CD4(+) and CD4(-) subsets fails to reflect the diversity of this lineage, and that more studies are needed to establish the functional significance of the antigen expression patterns and tissue residency of human NKT cells

    No Difference in the Rate of Change in Telomere Length or Telomerase Activity in HIV-Infected Patients after Three Years of Darunavir/Ritonavir with and without Nucleoside Analogues in the MONET Trial

    Get PDF
    OBJECTIVE: To determine whether nucleos(t)ide reverse transcriptase inhibitors (NRTI) contribute to an accelerated loss in telomere length (TL) in HIV-infected patients on antiretroviral therapy (ART). DESIGN: Substudy of randomised controlled trial. METHODS: Patients with HIV RNA <50 copies/mL on combination ART (n = 256) were randomised to darunavir/ritonavir (DRV/r) 800/100 mg once daily, either as monotherapy (n = 127) or with 2 NRTIs (n = 129) for up to 144 weeks. TL and telomerase activity was quantified on stored peripheral blood mononuclear cells (PBMC; n = 124) using quantitative real time PCR. RESULTS: Patients in the sub-study had a mean age of 44 years and had received NRTI for a mean of 6.4 years (range 1-20 years). As expected, older patients have significantly shorter TL (p = 0.006), while women had significantly longer TL (p = 0.026). There was no significant association between TL and either the duration of prior NRTI treatment (p = 0.894) or the use of a PI versus NNRTI (p = 0.107). There was no significant difference between patients who continued or ceased NRTI in the mean change/year of TL or telomerase (p = 0.580 and 0.280 respectively). CONCLUSION: Continuation versus cessation of NRTI treatment was not associated with an accelerated loss in TL or telomerase activity
    corecore