56 research outputs found

    Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis

    Get PDF
    Hepatocellular carcinoma (HCC) is the fourth most common solid tumor worldwide. The chemokine interleukin-8 (IL-8) is overexpressed in HCC and is a potential target for therapy. Although the transcription factor NF-κB regulates IL-8 expression, and while thymoquinone (TQ; the most bioactive constituent of black seed oil) inhibits NF-κB activity, the precise mechanisms by which TQ regulates IL-8 and cancer cell growth remain to be clarified. Here, we report that TQ inhibited growth of HCC cells in a dose- and time-dependent manner, caused G2M cell cycle arrest, and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, as well as cleavage of poly(ADP-ribose)polymerase. TQ treatments inhibited expression of NF-κB and suppressed IL-8 and its receptors. TQ treatments caused increased levels of reactive oxygen species (ROS) and mRNAs of oxidative stress-related genes, NQO1 and HO-1. Pretreatment of HepG2 cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-induced cell death. TQ treatment stimulated mRNA expression of pro-apoptotic Bcl-xS and TRAIL death receptors, and inhibited expression of the anti-apoptotic gene Bcl-2. TQ enhanced TRAIL-induced death of HepG2 cells, in part by up-regulating TRAIL death receptors, inhibiting NF-κB and IL-8 and stimulating apoptosis. Altogether, these findings provide insights into the pleiotropic molecular mechanisms of TQ-dependent suppression of HCC cell growth and underscore potential of this compound as anti-HCC drug

    Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κb, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines

    Get PDF
    Naringin has been reported to possess diverse pharmacological properties, including anti-arthritic and anti-inflammatory activities. The aim of the present study was to determine the potential anti-inflammatory effect of naringin in a mouse model of carrageenan-induced pleurisy. A single dose of naringin (40 and 80 mg/kg) was administered per oral (p.o.) 1 h before carrageenan (Cg) administration. Pro- and anti-inflammatory cytokines were analysed in pleural fluid. We also assessed the effects of naringin on the expression levels of iNOS, inducible cyclooxygenase isoform (COX-2), ICAM-1, MIP-2, PGE2, STAT3, TGF-β1, nuclear factor kappa B (NF-κB) and inhibitor of kappa B (IκBα) in lung tissue. The histological examinations revealed anti-inflammatory effect of naringin while Cg group deteriorated. Naringin downregulated Th1 and upregulated Th2 cytokines. Western blot analyses revealed increased protein expression of NF-κB, STAT3 and COX-2 and decreased IκBα in response to Cg treatment, which were reversed by the treatment with naringin. In the Cg group, mRNA expression levels of pro-inflammatory mediators upregulated and anti-inflammatory mediators downregulated. Naringin reversed these actions

    In vivo and in vitro studies evaluating the chemopreventive effect of metformin on the aryl hydrocarbon receptor-mediated breast carcinogenesis

    Get PDF
    Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model

    Cathine and cathinone disposition kinetics and neurotransmitter profile in several organs of rats exposed to a single dose of Catha edulis (Vahl) Forssk. ex Endl. extract

    Get PDF
    Catha edulis (Vahl) Forssk. ex Endl. (Khat) is a stimulant plant that contains cathine and cathinone, which its abuses induce euphoria, alertness, and motor activity. Since the toxicokinetics of these substances remain unclear, this study was carried out to investigate the disposition kinetics of cathine and cathinone, the neurotransmitter profile, following a single dose of C. edulis extract in rats. Twenty-four adult male Wistar albino rats (250-300 g) were randomly selected and divided into six groups of four rats each. All groups received a single oral dose of 2,000 mg/kg body weight, and blood and tissue samples from the brain, lung, heart, liver, and kidney were obtained at intervals of 0.5, 1, 2.5, 5, 12, and 24 h. The cathine and cathinone concentrations were identified and quantified using ion trap ultra-high performance liquid chromatography (HPLC-IT/MS). The neurotransmitter profile was detected using the quadrupole time of flight UPLC-QTOF/MS method. The lung, liver, and heart tissues attained the highest levels of cathine, while the highest level of cathinone was determined in the heart. Cathine and cathinone concentrations in the blood and heart peaked at 0.5 h. The concentrations peaked in the brain 2.5 h later, indicating that the heart had an immediate effect, whereas the brain had a longer-lasting one. They have longer half-lives (2.68 and 5.07 h, respectively) and may remain in the brain for longer durations (3.31 and 2.31 h, respectively). The neurotransmitters epinephrine, dopamine, norepinephrine, and serotonin were detected in a delayed, prolonged and organ-specific manner. Cathine and cathinone were deposited in considerable concentrations in all tissues analyzed, with the highest Cmax in the lung and Tmax in the heart tissues but not in the brain. In addition, neurotransmitters such as adrenaline, dopamine, norepinephrine, and serotonin were differentially detected in all tested samples in a organ-specific fashion. More study is needed to identify cathine and cathinone's effects on neurotransmitter profiles. Nevertheless, these findings provided a further basis for experimental, clinical, and forensic investigations

    Hydrothermal synthesis of calcium silicate hydrates in the presence of <em>3d-</em>ferromagnetic cations

    Get PDF
    1098-1101The effect of-transition metal cations, Fe3+ , Co2+ and Ni2+ on the formation of calcium silicate hydrates CaO&middot;SiO2&middot;H2O in the reaction system has been studied. The hydrothermal reaction products have been examined by X-ray diffraction, infrared spectroscopy and atomic absorption spectrophotometric techniques. The results indicate the presence of different shifts in the main interlayer d-spacing of calcium silicate hydrate hydrothermal products, especially 11 &Aring;-tobermorites: 5CaO&middot;6SiO25H2O. Calcium silicate hydrate phases formed are affected by ionic radii, acidic radical, concentration of the concerned cations and the reaction time. The mechanism of the reaction and incorporation (or substitution) of these cations in the crystal lattice of calcium silicate hydrate phases is also discussed

    Hydrothermal synthesis of calcium silicate hydrates in the presence of <em>3d-</em>ferromagnetic cations

    Get PDF
    1098-1101The effect of-transition metal cations, Fe3+ , Co2+ and Ni2+ on the formation of calcium silicate hydrates CaO&middot;SiO2&middot;H2O in the reaction system has been studied. The hydrothermal reaction products have been examined by X-ray diffraction, infrared spectroscopy and atomic absorption spectrophotometric techniques. The results indicate the presence of different shifts in the main interlayer d-spacing of calcium silicate hydrate hydrothermal products, especially 11 &Aring;-tobermorites: 5CaO&middot;6SiO25H2O. Calcium silicate hydrate phases formed are affected by ionic radii, acidic radical, concentration of the concerned cations and the reaction time. The mechanism of the reaction and incorporation (or substitution) of these cations in the crystal lattice of calcium silicate hydrate phases is also discussed

    Gold-containing compound BDG-I inhibits the growth of A549 lung cancer cells through the deregulation of miRNA expression

    No full text
    Gold complex bis(diethyldithiocarbamato-gold(I)) bis(diphenylphosphino) methane (BDG-I) is cytotoxic toward different cancer cell lines. We compared the cytotoxic effect of BDG-I with that of cisplatin in the A549 lung cancer cell line. Additionally, we investigated the molecular mechanism underlying the toxic effect of BDG-I toward the A549 cell line and the identification of cancer-related miRNAs likely to be involved in killing the lung cancer cells. Further, X-ray crystallographic data of the compound were acquired. Using microarray, global miRNA expression profiling in BDG-I-treated A549 cells revealed 64 upregulated and 86 downregulated miRNAs, which targeted 4689 and 2498 genes, respectively. Biological network connectivity of the miRNAs was significantly higher for the upregulated miRNAs than for the downregulated miRNAs. Two of the 10 most upregulated miRNAs (hsa-mir-20a-5p and hsa-mir-15b-5p) were associated with lung cancer. AmiGo2 server and Panther pathway analyses indicated significant enrichment in transcription regulation of miRNA target genes that promote intrinsic kinase-mediated signaling, TGF-β, and GnRH signaling pathways, as well as oxidative stress responses. BDG-I crystal structure X-ray diffraction studies revealed gold–gold intramolecular interaction [Au…Au = 3.1198 (3) Å] for a single independent molecule, reported to be responsible for its activity against cancer. Our present study sheds light on the development of novel gold complex with favorable anti-cancer therapeutic functionality. Keywords: Lung cancer, Chrysotherapeutic agents, Gold, miRN
    corecore