233 research outputs found

    Thermal-structural design study of an airframe-integrated Scramjet

    Get PDF
    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN

    Thermal-structural design study of an airframe-integrated Scramjet

    Get PDF
    The development and evaluation of a design concept for the cooled structures assembly for the Scramjet engine is discussed. Development concepts for engine subsystems and design concepts for the aircraft/engine interface are included. A thermal protection system was defined which makes it possible to attain a life of 100 hr and 1000 cycles, the specified goal. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six module engine, the mass per unit capture area is 1256 kg/sq m. The total mass of a six module engine assembly including the fuel system is 1502 kg

    EMPOWERED trial: protocol for a randomised control trial of digitally supported, highly personalised and measurement-based care to improve functional outcomes in young people with mood disorders

    Full text link
    Objectives Many adolescents and young adults with emerging mood disorders do not achieve substantial improvements in education, employment, or social function after receiving standard youth mental health care. We have developed a new model of care referred to as 'highly personalised and measurement-based care' (HP&MBC). HP&MBC involves repeated assessment of multidimensional domains of morbidity to enable continuous and personalised clinical decision-making. Although measurement-based care is common in medical disease management, it is not a standard practice in mental health. This clinical effectiveness trial tests whether HP&MBC, supported by continuous digital feedback, delivers better functional improvements than standard care and digital support. Method and analysis This controlled implementation trial is a PROBE study (Prospective, Randomised, Open, Blinded End-point) that comprises a multisite 24-month, assessor-blinded, follow-up study of 1500 individuals aged 15-25 years who present for mental health treatment. Eligible participants will be individually randomised (1:1) to 12 months of HP&MBC or standardised clinical care. The primary outcome measure is social and occupational functioning 12 months after trial entry, assessed by the Social and Occupational Functioning Assessment Scale. Clinical and social outcomes for all participants will be monitored for a further 12 months after cessation of active care. Ethics and dissemination This clinical trial has been reviewed and approved by the Human Research Ethics Committee of the Sydney Local Health District (HREC Approval Number: X22-0042 & 2022/ETH00725, Protocol ID: BMC-YMH-003-2018, protocol version: V.3, 03/08/2022). Research findings will be disseminated through peer-reviewed journals, presentations at scientific conferences, and to user and advocacy groups. Participant data will be deidentified. Trial registration number ACTRN12622000882729

    HORYZONS trial: protocol for a randomised controlled trial of a moderated online social therapy to maintain treatment effects from first-episode psychosis services.

    Full text link
    INTRODUCTION: Specialised early intervention services have demonstrated improved outcomes in first-episode psychosis (FEP); however, clinical gains may not be sustained after patients are transferred to regular care. Moreover, many patients with FEP remain socially isolated with poor functional outcomes. To address this, our multidisciplinary team has developed a moderated online social media therapy (HORYZONS) designed to enhance social functioning and maintain clinical gains from specialist FEP services. HORYZONS merges: (1) peer-to-peer social networking; (2) tailored therapeutic interventions; (3) expert and peer-moderation; and (4) new models of psychological therapy (strengths and mindfulness-based interventions) targeting social functioning. The aim of this trial is to determine whether following 2 years of specialised support and 18-month online social media-based intervention (HORYZONS) is superior to 18 months of regular care. METHODS AND ANALYSIS: This study is a single-blind randomised controlled trial. The treatment conditions include HORYZONS plus treatment as usual (TAU) or TAU alone. We recruited 170 young people with FEP, aged 16-27 years, in clinical remission and nearing discharge from Early Psychosis Prevention and Intervention Centre, Melbourne. The study includes four assessment time points, namely, baseline, 6-month, 12-month and 18-month follow-up. The study is due for completion in July 2018 and included a 40-month recruitment period and an 18-month treatment phase. The primary outcome is social functioning at 18 months. Secondary outcome measures include rate of hospital admissions, cost-effectiveness, vocational status, depression, social support, loneliness, self-esteem, self-efficacy, anxiety, psychological well-being, satisfaction with life, quality of life, positive and negative psychotic symptoms and substance use. Social functioning will be also assessed in real time through our Smartphone Ecological Momentary Assessment tool. ETHICS AND DISSEMINATION: Melbourne Health Human Research Ethics Committee (2013.146) provided ethics approval for this study. Findings will be made available through scientific journals and forums and to the public via social media and the Orygen website. TRIAL REGISTRATION NUMBER: ACTRN12614000009617; Pre-results

    The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture

    Get PDF
    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats

    Control of somatosensory cortical processing by thalamic posterior medial nucleus: A new role of thalamus in cortical function

    Full text link
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane- anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.This work was supported by a grant from Ministerio de Economia y Competitividad (BFU2012- 36107

    Tight Junction-Related Barrier Contributes to the Electrophysiological Asymmetry across Vocal Fold Epithelium

    Get PDF
    Electrophysiological homeostasis is indispensable to vocal fold hydration. We investigate tight junction (TJ)-associated components, occludin and ZO-1, and permeability with or without the challenge of a permeability-augmenting agent, histamine. Freshly excised ovine larynges are obtained from a local abattoir. TJ markers are explored via reverse transcriptase polymerase chain reaction (RT-PCR). Paracellular permeabilities are measured in an Ussing system. The gene expression of both TJ markers is detected in native ovine vocal fold epithelium. Luminal histamine treatment significantly decreases transepithelial resistance (TER) (N = 72, p<0.01) and increases penetration of protein tracer (N = 35, p<0.001), respectively, in a time-, and dose-dependent fashion. The present study demonstrates that histamine compromises TJ-related paracellular barrier across vocal fold epithelium. The detection of TJ markers indicates the existence of typical TJ components in non-keratinized, stratified vocal fold epithelium. The responsiveness of paracellular permeabilities to histamine would highlight the functional significance of this TJ-equivalent system to the electrophysiological homeostasis, which, in turn, regulates the vocal fold superficial hydration

    Packages of Care for Schizophrenia in Low- and Middle-Income Countries

    Get PDF
    In the third in a series of six articles on packages of care for mental disorders in low- and middle-income countries, Jair Mari and colleagues discuss the treatment of schizophrenia

    Workflow and Atlas System for Brain-Wide Mapping of Axonal Connectivity in Rat

    Get PDF
    Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts

    Serotonin, genetic variability, behaviour, and psychiatric disorders - a review

    Get PDF
    Brain monoamines, and serotonin in particular, have repeatedly been shown to be linked to different psychiatric conditions such as depression, anxiety, antisocial behaviour, and dependence. Many studies have implicated genetic variability in the genes encoding monoamine oxidase A (MAOA) and the serotonin transporter (5HTT) in modulating susceptibility to these conditions. Paradoxically, the risk variants of these genes have been shown, in vitro, to increase levels of serotonin, although many of the conditions are associated with decreased levels of serotonin. Furthermore, in adult humans, and monkeys with orthologous genetic polymorphisms, there is no observable correlation between these functional genetic variants and the amount or activity of the corresponding proteins in the brain. These seemingly contradictory data might be explained if the association between serotonin and these behavioural and psychiatric conditions were mainly a consequence of events taking place during foetal and neonatal brain development. In this review we explore, based on recent research, the hypothesis that the dual role of serotonin as a neurotransmitter and a neurotrophic factor has a significant impact on behaviour and risk for neuropsychiatric disorders through altered development of limbic neurocircuitry involved in emotional processing, and development of the serotonergic neurons, during early brain development
    corecore