547 research outputs found

    High-precision analysis of binary stars with planets. I. Searching for condensation temperature trends in the HD 106515 system

    Full text link
    We explore the probable chemical signature of planet formation in the remarkable binary system HD 106515. The A star hosts a massive long-period planet with 9 MJup detected by radial velocity. We also refine stellar and planetary parameters by using non-solar-scaled opacities when modeling the stars. Methods. We carried out a simultaneous determination of stellar parameters and abundances, by applying for the first time non-solar-scaled opacities in this binary system, in order to reach the highest possible precision. Results. The stars A and B in the binary system HD 106515 do not seem to be depleted in refractory elements, which is different when comparing the Sun with solar-twins. Then, the terrestrial planet formation would have been less efficient in the stars of this binary system. Together with HD 80606/7, this is the second binary system which does not seem to present a (terrestrial) signature of planet formation, and hosting both systems an eccentric giant planet. This is in agreement with numerical simulations, where the early dynamical evolution of eccentric giant planets clear out most of the possible terrestrial planets in the inner zone. We refined the stellar mass, radius and age for both stars and found a notable difference of 78% in R compared to previous works. We also refined the planet mass to mp sini = 9.08 +/- 0.20 MJup, which differs by 6% compared with literature. In addition, we showed that the non-solar-scaled solution is not compatible with the classical solar-scaled method, and some abundance differences are comparable to NLTE or GCE effects specially when using the Sun as reference. Then, we encourage the use of non-solar-scaled opacities in high-precision studies such as the detection of Tc trends.[abridged]Comment: 9 pages, 10 figures, A&A accepted. arXiv admin note: text overlap with arXiv:1507.0812

    On the age of the magnetically active WW Psa and TX Psa members of the beta Pictoris association

    Get PDF
    There are a variety of different techniques available to estimate the ages of pre-main-sequence stars. Components of physical pairs, thanks to their strict coevality and the mass difference, such as the binary system analysed in this paper, are best suited to test the effectiveness of these different techniques. We consider the system WW Psa + TX Psa whose membership of the 25-Myr beta Pictoris association has been well established by earlier works. We investigate which age dating technique provides the best agreement between the age of the system and that of the association. We have photometrically monitored WW Psa and TX Psa and measured their rotation periods as P = 2.37d and P = 1.086d, respectively. We have retrieved from the literature their Li equivalent widths and measured their effective temperatures and luminosities. We investigate whether the ages of these stars derived using three independent techniques are consistent with the age of the beta Pictoris association. We find that the rotation periods and the Li contents of both stars are consistent with the distribution of other bona fide members of the cluster. On the contrary, the isochronal fitting provides similar ages for both stars, but a factor of about four younger than the quoted age of the association, or about 30% younger when the effects of magnetic fields are included. We explore the origin of the discrepant age inferred from isochronal fitting, including the possibilities that either the two components may be unresolved binaries or that the basic stellar parameters of both components are altered by enhanced magnetic activity. The latter is found to be the more reasonable cause, suggesting that age estimates based on the Li content is more reliable than isochronal fitting for pre-main-sequence stars with pronounced magnetic activity.Comment: Accepted by Astronomy and Astrophysics on December 13, 2016. 13 pages and 11 figure

    Quantum droplets with particle imbalance in one-dimensional optical lattices

    Full text link
    We study the formation of particle-imbalanced quantum droplets in a one-dimensional optical lattice containing a binary bosonic mixture at zero temperature. To understand the effects of the imbalance from both the few- and many-body perspectives, we employ density matrix renormalization group (DMRG) simulations and perform the extrapolation to the thermodynamic limit. In contrast to the particle-balanced case, not all bosons are paired, resulting in an interplay between bound states and individual atoms that leads to intriguing phenomena. Quantum droplets manage to sustain a small particle imbalance, resulting in an effective magnetization. However, as the imbalance is further increased, a critical point is eventually crossed, and the droplets start to expel the excess particles while the magnetization in the bulk remains constant. Remarkably, the unpaired particles on top of the quantum droplet effectively form a super Tonks-Girardeau (hard-rod) gas. The expulsion point coincides with the critical density at which the size of the super Tonks-Girardeau gas matches the size of the droplet.Comment: Main text: 16 pages, 11 figures. Appendix: 4 pages, 3 figure

    New transit observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b, and WASP-39 b

    Get PDF
    We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.Comment: Submitted to Acta Astronomic

    The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M8)

    Get PDF
    We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the associated star cluster NGC6530. We characterize through spectral fitting emission lines of H-alpha, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES/Giraffe and UVES spectrographs, on more than 1000 sightlines towards the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from H-alpha/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M8East-IR. The origins of kinematical expansion and ionization of the NGC6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines.Comment: 26 pages, 31 figures, accepted on Astronomy and Astrophysics journa

    The Gaia-ESO Survey: membership and Initial Mass Function of the Gamma Velorum cluster

    Get PDF
    Understanding the properties of young open clusters, such as the Initial Mass Function (IMF), star formation history and dynamic evolution, is crucial to obtain reliable theoretical predictions of the mechanisms involved in the star formation process. We want to obtain a list, as complete as possible, of confirmed members of the young open cluster Gamma Velorum, with the aim of deriving general cluster properties such as the IMF. We used all available spectroscopic membership indicators within the Gaia-ESO public archive together with literature photometry and X-ray data and, for each method, we derived the most complete list of candidate cluster members. Then, we considered photometry, gravity and radial velocities as necessary conditions to select a subsample of candidates whose membership was confirmed by using the lithium and Hα\alpha lines and X-rays as youth indicators. We found 242 confirmed and 4 possible cluster members for which we derived masses using very recent stellar evolutionary models. The cluster IMF in the mass range investigated in this study shows a slope of α=2.6±0.5\alpha=2.6\pm0.5 for 0.5<M/M<1.30.5<M/M_\odot <1.3 and α=1.1±0.4\alpha=1.1\pm0.4 for 0.16<M/M<0.50.16<M/M_\odot <0.5 and is consistent with a standard IMF. The similarity of the IMF of the young population around γ2\gamma^2 Vel to that in other star forming regions and the field suggests it may have formed through very similar processes.Comment: Accepted for publication in A&A; 18 pages, 11 figures, 5 table

    The Gaia-ESO Survey: Tracing interstellar extinction

    Get PDF
    Large spectroscopic surveys have enabled in the recent years the computation of three-dimensional interstellar extinction maps thanks to accurate stellar atmospheric parameters and line-of-sight distances. Such maps are complementary to 3D maps extracted from photometry, allowing a more thorough study of the dust properties. Our goal is to use the high-resolution spectroscopic survey Gaia-ESO in order to obtain with a good distance resolution the interstellar extinction and its dependency as a function of the environment and the Galactocentric position. We use the stellar atmospheric parameters of more than 5000 stars, obtained from the Gaia-ESO survey second internal data release, and combine them with optical (SDSS) and near-infrared (VISTA) photometry as well as different sets of theoretical stellar isochrones, in order to calculate line-of-sight extinction and distances. The extinction coefficients are then compared with the literature to discuss their dependancy on the stellar parameters and position in the Galaxy. Within the errors of our method, our work does not show that there is any dependence of the interstellar extinction coefficient on the atmospheric parameters of the stars. We do not find any evidence of the variation of E(J-H)/E(J-K) with the angle from the Galactic centre nor with Galactocentric distance. This suggests that we are dealing with a uniform extinction law in the SDSS ugriz bands and the near-IR JHKs bands. Therefore, extinction maps using mean colour-excesses and assuming a constant extinction coefficient can be used without introducing any systematic errors.Comment: 13 pages, 14 figures, 1 Appendix accepted for publication in Astronomy&Astrophysic

    The Gaia-ESO Survey: the selection function of the Milky Way field stars

    Get PDF
    The Gaia-ESO Survey was designed to target all major Galactic components (i.e., bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with VLT/FLAMES and provide the weights that characterise the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way.Comment: 18 pages, 19 figures, Accepted for publication in MNRAS (April 25, 2016

    Hydrosomes: femtoliter containers for fluorescence spectroscopy studies

    Get PDF
    We report on improvements and innovations in the use of hydrosomes to encapsulate and study single molecules. Hydrosomes are optically-trappable aqueous nanodroplets. The droplets are suspended in a fluorocarbon medium that is immiscible with water and has an index of refraction lower than water, so hydrosomes are stable and optically trapped by a focused laser beam (optical tweezers). Using optical tweezers, we hold the hydrosomes within a confocal observation volume and interrogate the encapsulated molecule by fluorescence excitation. This method allows for long observation times of a molecule without the need for surface immobilization or liposome encapsulation. We have developed a new way for creating hydrosomes on demand by inertially launching them into the fluorocarbon matrix using a piezo-activated micropipette. Time-resolved fluorescence anisotropy studies are carried out to characterize the effects of the hydrosome interface boundary on biological molecules and to determine whether molecules encapsulated within hydrosomes diffuse freely throughout the available volume. We measured the fluorescence anisotropy decay of 20mer DNA duplexes, and enhanced green fluorescent protein (GFP). We conclude that the molecules rotate freely inside the nanodroplets and do not stick or aggregate at the boundary

    Hydrosomes: femtoliter containers for fluorescence spectroscopy studies

    Get PDF
    We report on improvements and innovations in the use of hydrosomes to encapsulate and study single molecules. Hydrosomes are optically-trappable aqueous nanodroplets. The droplets are suspended in a fluorocarbon medium that is immiscible with water and has an index of refraction lower than water, so hydrosomes are stable and optically trapped by a focused laser beam (optical tweezers). Using optical tweezers, we hold the hydrosomes within a confocal observation volume and interrogate the encapsulated molecule by fluorescence excitation. This method allows for long observation times of a molecule without the need for surface immobilization or liposome encapsulation. We have developed a new way for creating hydrosomes on demand by inertially launching them into the fluorocarbon matrix using a piezo-activated micropipette. Time-resolved fluorescence anisotropy studies are carried out to characterize the effects of the hydrosome interface boundary on biological molecules and to determine whether molecules encapsulated within hydrosomes diffuse freely throughout the available volume. We measured the fluorescence anisotropy decay of 20mer DNA duplexes, and enhanced green fluorescent protein (GFP). We conclude that the molecules rotate freely inside the nanodroplets and do not stick or aggregate at the boundary
    corecore