412 research outputs found

    Effectiveness of Two Different Fluoride-Based Agents in the Treatment of Dentin Hypersensitivity: A Prospective Clinical Trial

    Get PDF
    Hyperesthesia is related to increased sensitivity of dental tissues to mechanical, chemical and thermal stimuli. The aim of this prospective clinical trial was to compare the effectiveness of a calcium-fluoride-forming agent (Tiefenfluorid®, Humanchemie GmbH, Alfeld, Germany) with that of a fluoride varnish (Enamelast™, Ultradent Inc., Cologne, Germany) in the treatment of dental hyperesthesia in adult patients. In total, 176 individuals (106 females and 70 males, aged 18–59 years old) diagnosed with dental hyperesthesia (DH) were enrolled. The main clinical symptoms were hyperesthesia from coldness and sweetness during chewing; the types of clinical lesions were also determined and recorded. The patients were selected randomly and divided into two groups: (i) the first group of 96 patients was treated with Tiefenfluorid® applied in three appointments at 7-day intervals; (ii) the second group of 80 patients was treated with Enamelast™, applied seven times at 7-day intervals. All the patients were recalled 7 days, 14 days, 1 month, 3 months, and 6 months from the last application. At the baseline and during every follow-up visit, the DH was measured with a pulp tester. A random intercept/random slope model was used to evaluate the effect of the treatment, at various times with respect to the initial diagnosis. Within the limits of the present study, Tiefenfluorid® was more effective than Enamelast™ against DH in that it provided long-lasting results, with a significant improvement still detected at the latest 6-month follow-up

    Genetic and Dietary Factors Influencing the Progression of Nuclear Cataract.

    Get PDF
    PURPOSE: To determine the heritability of nuclear cataract progression and to explore prospectively the effect of dietary micronutrients on the progression of nuclear cataract. DESIGN: Prospective cohort study. PARTICIPANTS: Cross-sectional nuclear cataract and dietary measurements were available for 2054 white female twins from the TwinsUK cohort. Follow-up cataract measurements were available for 324 of the twins (151 monozygotic and 173 dizygotic twins). METHODS: Nuclear cataract was measured using a quantitative measure of nuclear density obtained from digital Scheimpflug images. Dietary data were available from EPIC food frequency questionnaires. Heritability was modeled using maximum likelihood structural equation twin modeling. Association between nuclear cataract change and micronutrients was investigated using linear and multinomial regression analysis. The mean interval between baseline and follow-up examination was 9.4 years. MAIN OUTCOME MEASURES: Nuclear cataract progression. RESULTS: The best-fitting model estimated that the heritability of nuclear cataract progression was 35% (95% confidence interval [CI], 13-54), and individual environmental factors explained the remaining 65% (95% CI, 46-87) of variance. Dietary vitamin C was protective against both nuclear cataract at baseline and nuclear cataract progression (β = -0.0002, P = 0.01 and β = -0.001, P = 0.03, respectively), whereas manganese and intake of micronutrient supplements were protective against nuclear cataract at baseline only (β = -0.009, P = 0.03 and β = -0.03, P = 0.01, respectively). CONCLUSIONS: Genetic factors explained 35% of the variation in progression of nuclear cataract over a 10-year period. Environmental factors accounted for the remaining variance, and in particular, dietary vitamin C protected against cataract progression assessed approximately 10 years after baseline

    The Genomic Loci of Specific Human tRNA Genes Exhibit Ageing-Related DNA Hypermethylation

    Get PDF
    The epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ~46kb (<0.002% genome), is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational and additional regulatory roles. Here, we interrogate the DNA methylation state of the genomic loci of human tRNA. We identify a genomic enrichment for age-related DNA hypermethylation at tRNA loci. Analysis in 4,350 MeDIP-seq peripheral-blood DNA methylomes (16-82 years), identifies 44 and 21 hypermethylating specific tRNAs at study-and genome-wide significance, respectively, contrasting with 0 hypomethylating. Validation and replication (450k array & independent targeted Bisuphite-sequencing) supported the hypermethylation of this functional unit. Tissue-specificity is a significant driver, although the strongest consistent signals, also independent of major cell-type change, occur in tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6. This study presents a comprehensive evaluation of the genomic DNA methylation state of human tRNA genes and reveals a discreet hypermethylation with advancing age

    The Genomic Loci of Specific Human tRNA Genes Exhibit Ageing-Related DNA Hypermethylation

    Get PDF
    Abstract Understanding how the epigenome deteriorates with age and subsequently impacts on biological function may bring unique insights to ageing-related disease mechanisms. As a central cellular apparatus, tRNAs are fundamental to the information flow from DNA to proteins. Whilst only being transcribed from ~46kb ( < 0.002%) of the human genome, their transcripts are the second most abundant in the cell. Furthermore, it is now increasingly recognised that tRNAs and their fragments also have complex regulatory functions. In both their core translational and additional regulatory roles, tRNAs are intimately involved in the control of metabolic processes known to affect ageing. Experimentally DNA methylation can alter tRNA expression, but little is known about the genomic DNA methylation state of tRNAs. Here, we find that the human genomic tRNA loci (610 tRNA genes termed the tRNAome) are enriched for ageing-related DNA hypermethylation. We initially identified DNA hypermethylation of 44 and 21 specific tRNA genes, at study-wide (p < 4.34 × 10 − 9 ) and genome-wide ( p < 4.34 × 10 − 9 ) significance, respectively, in 4,350 MeDIP-seq peripheral blood DNA methylomes (16 - 82 years). This starkly contrasted with 0 hypomethylated at both these significance levels. Further analysing the 21 genome-wide results, we found 3 of these tRNAs to be independent of major changes in cell-type composition (tRNA-iMet-CAT-1-4, tRNA-Ser-AGA-2-6, tRNA-Ile-AAT-4-1). We also excluded the ageing-related changes being due to the inherent CpG density of the tRNAome by permutation analysis (1,000x, Empirical p-value < 1 × 10 − 3 ). We additionally explored 79 tRNA loci in an independent cohort using Fluidigm deep targeted bisulfite-sequencing of pooled DNA (n=190) across a range of 4 timepoints (aged ~4, ~28, ~63, ~78 years). This revealed these ageing changes to be specific to particular isodecoder copies of these tRNA (tRNAs coding for the same amino acid but with sequence body differences) and included replication of 2 of the 3 genome-wide tRNAs. Additionally, this isodecoder-specificity may indicate the potential for regulatory fragment changes with age. In this study we provide the first comprehensive evaluation at the genomic DNA methylation state of the human tRNAome, revealing a discreet and strongly directional hypermethylation with advancing age

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits

    Get PDF
    The prediction of appearance traits by use of solely genetic information has become an established approach and a number of statistical prediction models have already been developed for this purpose. However, given limited knowledge on appearance genetics, currently available models are incomplete and do not include all causal genetic variants as predictors. Therefore such prediction models may benefit from the inclusion of additional information that acts as a proxy for this unknown genetic background. Use of priors, possibly informed by trait category prevalence values in biogeographic ancestry groups, in a Bayesian framework may thus improve the prediction accuracy of previously predicted externally visible characteristics, but has not been investigated as of yet. In this study, we assessed the impact of using trait prevalence-informed priors on the prediction p

    Associations with photoreceptor thickness measures in the UK Biobank.

    Get PDF
    Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness

    Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci

    Get PDF
    Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus
    • …
    corecore