757 research outputs found

    High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    Get PDF
    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described

    Compensation in epitaxial cubic SiC films

    Get PDF
    Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC

    A study of 60 Gigahertz intersatellite link applications

    Get PDF
    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed

    Two Carrier Analysis of Persistent Photoconductivity in Modulation-Doped Structures

    Get PDF
    A simultaneous fit of Hall and conductivity data gives quantitative results on the carrier concentration and mobility in both the quantum well and the parallel conduction channel. In this study this method was applied to reveal several new findings on the effect of persistent photoconductivity (PPC) on free-carrier concentrations and mobilities. The increase in the two-dimensional electron-gas (2DEG) concentration is significantly smaller than the apparent one derived from single carrier analysis of the Hall coefficient. In the two types of structures investigated, delta doped and continuously doped barrier, the apparent concentration almost doubles following illumination, while analysis reveals an increase of about 20% in the 2DEG. The effect of PPC on mobility depends on the structure. For the sample with a continuously doped barrier the mobility in the quantum well more than doubles. This increase is attributed to the effective screening of the ionized donors by the large electron concentration in the barrier. In the delta doped barrier sample the mobility is reduced by almost a factor of 2. This decrease is probably caused by strong coupling between the two wells, as is demonstrated by self-consistent analysis

    Mixed Carrier Conduction in Modulation-doped Field Effect Transistors

    Get PDF
    The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases

    Molecular van der Waals fluids in cavity quantum electrodynamics

    Get PDF
    Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. However, there are currently very limited approaches to manipulate van der Waals interactions. In this work, we demonstrate that strong light-matter coupling can be used to tune van der Waals interactions, and, thus, control the thermodynamic properties of many-molecule systems. Our analysis reveals orientation-dependent intermolecular interactions between van der Waals molecules (for example, H2) that depend on the distance between the molecules R as R−3 and R0. Moreover, we employ non-perturbative \textit{ab initio} cavity quantum electrodynamics calculations to develop machine learning-based van der Waals interaction potentials for molecules inside optical cavities. By simulating fluids of up to 1,000 H2 molecules, we demonstrate that strong light-matter coupling can tune the structural and thermodynamic properties of molecular fluids. In particular, we observe collective orientational order in many-molecule systems as a result of cavity-modified van der Waals interactions. These simulations and analyses demonstrate both local and collective effects induced by strong light-matter coupling and open new paths for controlling the properties of condensed phase systems

    A model for optimal fleet composition of vessels for offshore wind farm maintenance

    Get PDF
    We present a discrete optimisation model that chooses an optimal fleet of vessels to support maintenance operations at Offshore Wind Farms (OFWs). The model is presented as a bi-level problem. On the first (tactical) level, decisions are made on the fleet composition for a certain time horizon. On the second (operational) level, the fleet is used to optimise the schedule of operations needed at the OWF, given events of failures and weather conditions

    2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA.

    Get PDF
    Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information

    2'-Alkynyl spin-labelling is a minimally perturbing tool for DNA structural analysis

    Get PDF
    Funding: Engineering and Physical Sciences Research Council [EP/M019195/1]; Engineering and Physical Sciences Research Council Studentship (to J.S.H.); Biotechnology and Biological Sciences Research Council [BB/J001694/2, BB/R021848/1]; ADTBio; University of Kentucky and NCI Cancer Center Support Grant [P30 CA177558]; The Carmen L. Buck Endowment; Emerging Fields Initiative of the Friedrich-Alexander-University of Erlangen-Nuremberg [Grant title ‘Chemistry in Live Cells’]; Wellcome Trust [099149/Z/12/Z]; Royal Society, University Research Fellowship (to J.E.L.). Funding for open access charge: University of Oxford.The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2–10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2′ position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2′-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.Publisher PDFPeer reviewe

    Parental internalizing symptoms as predictors of anxiety symptoms in clinic-referred children

    Get PDF
    Background: Mothers’ and fathers’ internalizing symptoms may influence children’s anxiety symptoms differently. Objective: To explore the relationship between parental internalizing symptoms and children’s anxiety symptoms in a clinical sample of children with anxiety disorders. Method: The sample was recruited through community mental health clinics for a randomized controlled anxiety treatment trial. At pre-intervention, children (n = 182), mothers (n = 165), and fathers (n = 72) reported children’s anxiety symptoms. Mothers and fathers also reported their own internalizing symptoms. The children were aged 8 to 15 years (Mage = 11.5 years, SD = 2.1, 52.2% girls) and all had a diagnosis of separation anxiety, social phobia, and/or generalized anxiety disorder. We examined parental internalizing symptoms as predictors of child anxiety symptoms in multiple regression models. Results: Both mother and father rated internalizing symptoms predicted children’s self-rated anxiety levels (adj. R2 = 22.0%). Mother-rated internalizing symptoms predicted mother-rated anxiety symptoms in children (adj. R2 = 7.0%). Father-rated internalizing symptoms did not predict father-rated anxiety in children. Conclusions: Clinicians should incorporate parental level of internalizing symptoms in their case conceptualizations
    • …
    corecore