1,480 research outputs found

    Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Deflected Supersonic Jets: Application to HH 110

    Full text link
    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets, and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. Laboratory jets can be studied for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range where the codes must perform well. In this paper we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in 3-D, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.Comment: Full resolution figures available at http://sparky.rice.edu/~hartigan/pub.html To appear in Ap

    On the structure and stability of magnetic tower jets

    Get PDF
    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic-energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch (MCL) models, magnetic fields dominate only at scales 100\lesssim 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform 3-D ideal MHD AMR simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.Comment: 16 pages, 11 figures, published in ApJ: ApJ, 757, 6

    Threats to Impartiality in Capital Jury Selection: Addressing Dead-Serious Falsifications

    Get PDF
    The American Bar Association (ABA) filed an amicus brief1 in the Boston Marathon bombing case that took direct aim at current jury selection procedures within the context of highly publicized capital trials. It strongly recommended that knowledge about the case, including pretrial publicity, be carefully investigated. Moreover, the brief flatly stated that assertions of fairness and impartiality by venirepersons are “not reliable.”2 Is this true? What can social science tell us about the objectivity, truthfulness, and personal perspectives (e.g., biases or viewpoints) of potential jurors—in general, and on a case-by-case basis

    Super-paramagnetic clustering of yeast gene expression profiles

    Get PDF
    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified

    Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages

    Get PDF
    Abstract Background Interleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined. Results Human macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone. Conclusions Together, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.http://deepblue.lib.umich.edu/bitstream/2027.42/78250/1/1471-2172-11-52.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78250/2/1471-2172-11-52.pdfPeer Reviewe

    Two-component jet simulations: I. Topological stability of analytical MHD outflow solutions

    Full text link
    Observations of collimated outflows in young stellar objects indicate that several features of the jets can be understood by adopting the picture of a two-component outflow, wherein a central stellar component around the jet axis is surrounded by an extended disk-wind. The precise contribution of each component may depend on the intrinsic physical properties of the YSO-disk system as well as its evolutionary stage. In this context, the present article starts a systematic investigation of two-component jet models via time-dependent simulations of two prototypical and complementary analytical solutions, each closely related to the properties of stellar-outflows and disk-winds. These models describe a meridionally and a radially self-similar exact solution of the steady-state, ideal hydromagnetic equations, respectively. By using the PLUTO code to carry out the simulations, the study focuses on the topological stability of each of the two analytical solutions, which are successfully extended to all space by removing their singularities. In addition, their behavior and robustness over several physical and numerical modifications is extensively examined. It is found that radially self-similar solutions (disk-winds) always reach a final steady-state while maintaining all their well-defined properties. The different ways to replace the singular part of the solution around the symmetry axis, being a first approximation towards a two-component outflow, lead to the appearance of a shock at the super-fast domain corresponding to the fast magnetosonic separatrix surface. Conversely, the asymptotic configuration and the stability of meridionally self-similar models (stellar-winds) is related to the heating processes at the base of the wind.Comment: Accepted for publication in A&

    Design to Delivery of Additively Manufactured Propulsion Systems for the SWARM-EX Mission

    Get PDF
    Recent progress in miniaturized spacecraft propulsion technology has allowed for the development of complex, multi-vehicle missions which enable the cost-effective realization of science goals that would previously have been prohibitively expensive. The upcoming NSF-funded Space Weather Atmospheric Reconfigurable Multiscale EXperiment (SWARM-EX) mission leverages these swarm techniques to demonstrate novel autonomous formation flying capabilities while characterizing the spatial and temporal variability of ion-neutral interactions in the Equatorial Ionization Anomaly and Equatorial Thermospheric Anomaly. SWARM-EX will fly a trio of 3U CubeSats in a variety of relative orbits with along-track separations ranging from 3 km to 1300 km. To achieve the required orbital variability, the mission uses a novel hybrid approach of differential drag and an onboard cold gas propulsion system. Mission requirements necessitate a propulsion system that provides each spacecraft with 15 m/s of ∆V and a maximum thrust greater than 5 mN in a volume of roughly 0.7U (7 cm x 10 cm x 10 cm). Unlike many other CubeSat-scale cold gas propulsion systems which are used to provide attitude control and perform reaction wheel desaturation burns, the primary objective of the SWARM-EX propulsion system (SEPS) is to provide ∆V during maneuvers. The Georgia Institute of Technology Space Systems Design Laboratory (SSDL) is conducting the design, assembly, and testing of three identical SEPS. By leveraging additive manufacturing technology, the propellant tanks, nozzle, and tubing are combined into a single structure that efficiently utilizes the allocated volume. The propulsion system uses two-phase R-236fa refrigerant as a propellant, which allows for the storage of the majority of propellant mass as a liquid to maximize volumetric efficiency. The final design allows for 17 m/s of total ∆V per spacecraft and a measured maximum thrust of approximately 35 mN for short pulse lengths at room temperature. Each individual propulsion system has a volume under 0.5U (489 cm3), making them among the smallest formation-flying CubeSat-scale propulsion systems developed thus far. Owing to their two-phase propellant storage and single nozzle, the SEPS have a high impulse density (total impulse provided per unit of system volume) of 176 N-s/L. Additionally, process improvements to mitigate known failure modes such as propellant leaks and foreign object debris are implemented. This paper describes the entire design-to-delivery life cycle of the SWARM-EX propulsion units, including pertinent mission requirements, propulsion system design methodologies, assembly, and testing. Major lessons learned for future small satellite propulsive endeavors are also detailed
    corecore