147 research outputs found

    Corporate Social Responsibility and Operational Inefficiency: A Dynamic Approach

    Get PDF
    Sustainability is currently a common term used more and more frequently in the academic literature and in the public communications of companies. This is an indicative that suggests that more and more sustainability is understood as a challenge that involves not only environmental aspects, but also as an integrative concept including economic, environmental and social aspects that should be a key pillar of the most highly innovative and advanced companies in the twenty first century. This study has been developed over several years, collecting detailed information on more than two hundreds different ESCO projects (Energy Service Company) in Spain, developed during five years (2010 to 2014). The aim of this research is related to obtaining a better understanding of an issue that is a concern: to what extend these projects that are seeking the efficient reduction of energy from collaboration between companies, could contribute to the integrated vision of sustainability, as a platform for the integration of economic and environmental.This research was funded by the National Science Centre (Narodowe Centrum Nauki) in Poland grant number DEC-2016/23/B/HS4/03398

    Canards, Folded Nodes, and Mixed-Mode Oscillations in Piecewise-Linear Slow-Fast Systems

    Get PDF
    Canard-induced phenomena have been extensively studied in the last three decades, from both the mathematical and the application viewpoints. Canards in slow-fast systems with (at least) two slow variables, especially near folded-node singularities, give an essential generating mechanism for mixed-mode oscillations (MMOs) in the framework of smooth multiple timescale systems. There is a wealth of literature on such slow-fast dynamical systems and many models displaying canard-induced MMOs, particularly in neuroscience. In parallel, since the late 1990s several papers have shown that the canard phenomenon can be faithfully reproduced with piecewise-linear (PWL) systems in two dimensions, although very few results are available in the three-dimensional case. The present paper aims to bridge this gap by analyzing canonical PWL systems that display folded singularities, primary and secondary canards, with a similar control of the maximal winding number as in the smooth case. We also show that the singular phase portraits are compatible in both frameworks. Finally, we show using an example how to construct a (linear) global return and obtain robust PWL MMOs

    Nonlinear estimation of synaptic conductances via piecewise linear systems

    Get PDF
    This volume contains extended abstracts outlining selected talks and other selected presentations given by participants throughout theWe use the piecewise linear McKean model to present a proof-of-concept to address the estimation of synaptic conductances when a neuron is spiking. Using standard techniques of non-smooth dynamical systems, we obtain an approximation of the period in terms of the parameters of the system which allows to estimate the steady synaptic conductance of the spiking neuron. The method gives also fairly good estimations when the synaptic conductances vary slowly in timePeer ReviewedPostprint (published version

    Estimation of synaptic conductance in the spiking regime for the McKean neuron model

    Get PDF
    In this work, we aim at giving a first proof of concept to address the estimation of synaptic conductances when a neuron is spiking, a complex inverse nonlinear problem which is an open challenge in neuroscience. Our approach is based on a simplified model of neuronal activity, namely, a piecewise linear version of the FitzHugh-Nagumo model. This simplified model allows precise knowledge of the nonlinear f-I curve by using standard techniques of nonsmooth dynamical systems. In the regular firing regime of the neuron model, we obtain an approximation of the period which, in addition, improves previous approximations given in the literature to date. By knowing both this expression of the period and the current applied to the neuron, and then solving an inverse problem with a unique solution, we are able to estimate the steady synaptic conductance of the cell's oscillatory activity. Moreover, the method gives also good estimations when the synaptic conductance varies slowly in time.Peer ReviewedPreprin

    Magnetic field dependence of the density of states in the multiband superconductor β\beta-Bi2_2Pd

    Full text link
    We present very low temperature scanning tunneling microscopy (STM) experiments on single crystalline samples of the superconductor β\beta-Bi2_2Pd. We find a single fully isotropic superconducting gap. However, the magnetic field dependence of the intervortex density of states is higher than the one expected in a single gap superconductor, and the hexagonal vortex lattice is locked to the square atomic lattice. Such increase in the intervortex density of states and vortex lattice locking have been found in superconductors with multiple superconducting gaps and anisotropic Fermi surfaces. We compare the upper critical field Hc2(T)H_{c2}(T) obtained in our sample with previous measurements and explain available data within multiband supercondutivity. We propose that β\beta-Bi2_2Pd is a single gap multiband superconductor. We anticipate that single gap multiband superconductivity can occur in other compounds with complex Fermi surfaces.Comment: 8 pages, 7 figure

    Estimation of the synaptic conductance in a McKean-model neuron

    Get PDF
    Estimating the synaptic conductances impinging on a single neuron directly from its membrane potential is one of the open problems to be solved in order to understand the flow of information in the brain. Despite the existence of some computational strategies that give circumstantial solutions ([1-3] for instance), they all present the inconvenience that the estimation can only be done in subthreshold activity regimes. The main constraint to provide strategies for the oscillatory regimes is related to the nonlinearity of the input-output curve and the difficulty to compute it. In experimental studies it is hard to obtain these strategies and, moreover, there are no theoretical indications of how to deal with this inverse non-linear problem. In this work, we aim at giving a first proof of concept to address the estimation of synaptic conductances when the neuron is spiking. For this purpose, we use a simplified model of neuronal activity, namely a piecewise linear version of the Fitzhugh-Nagumo model, the McKean model ([4], among others), which allows an exact knowledge of the nonlinear f-I curve by means of standard techniques of non-smooth dynamical systems. As a first step, we are able to infer a steady synaptic conductance from the cell's oscillatory activity. As shown in Figure ¿Figure1,1, the model shows the relative errors of the conductances of order C, where C is the membrane capacitance (C<<1), notably improving the errors obtained using filtering techniques on the membrane potential plus linear estimations, see numerical tests performed in [5].Peer ReviewedPostprint (published version

    Does aquatic exercise improve commonly reported predisposing risk factors to falls within the elderly? A systematic review

    Get PDF
    Background According to the World Health Organization, the elderly are at the highest risk of injury or death from a fall. Age-related changes in strength, balance and flexibility are degenerative factors that may increase the risk of falling, and an aquatic training may offer a favourable environment to improve these modifiable risk factors. Methods A systematic review was conducted to assess the potential preventative role of aquatic exercise for reducing the risk of falls in the elderly by improving predisposing risk factors. Electronic databases and reference lists of pertinent articles published between 2005 and 2018 were searched. Randomized controlled trials (RCTs) that directly or indirectly addressed the effect of aquatic exercise for the prevention of falls in healthy participants were included within the synthesis. Studies were included if they were reported between January 2005 and May 2018 within a population aged between 60 and 90 years old that were without exercise-effecting comorbidities. Data related to participant demographics, study design, methodology, interventions and outcomes was extracted by one reviewer. Methodological quality assessment was independently performed by two reviewers using the PEDro (Physiotherapy Evidence Database) scale. Results Fourteen trials met the inclusion criteria. Exercise intervention duration and frequency varied from 2 to 24 weeks, from 2 to 3 times per week, from 40 to 90 min per session. Fall rate was not reported in any of the studies analysed. However, aquatic exercise improved key predisposing physical fitness components that are modifiable and internal risk factors for falling. Conclusions There is limited, low-quality evidence to support the use of aquatic exercise for improving physiological components that are risk factors for falling. Although the evidence is limited, and many interventions are not well described, these results should be considered by health and exercise professionals when making evidence-based, clinical decisions regarding training programmes to reduce the risk of falling

    Whole‐brain dynamics differentiate among cisgender and transgender individuals

    Get PDF
    How the brain represents gender identity is largely unknown, but some neural differences have recently been discovered. We used an intrinsic ignition framework to investigate whether there are gender differences in the propagation of neural activity across the whole-brain and within resting-state networks. Studying 29 trans men and 17 trans women with gender incongruence, 22 cis women, and 19 cis men, we computed the capability of a given brain area in space to propagate activity to other areas (mean-ignition), and the variability across time for each brain area (node-metastability). We found that both measurements differentiated all groups across the whole brain. At the network level, we found that compared to the other groups, cis men showed higher mean-ignition of the dorsal attention network and node-metastability of the dorsal and ventral attention, executive control, and temporal parietal networks. We also found higher mean-ignition values in cis men than in cis women within the executive control network, but higher mean-ignition in cis women than cis men and trans men for the default mode. Node-metastability was higher in cis men than cis women in the somatomotor network, while both mean-ignition and node-metastability were higher for cis men than trans men in the limbic network. Finally, we computed correlations between these measurements and a body image satisfaction score. Trans men's dissatisfaction as well as cis men's and cis women's satisfaction toward their own body image were distinctively associated with specific networks in each group. Overall, the study of the whole-brain network dynamical complexity discriminates gender identity groups, functional dynamic approaches could help disentangle the complex nature of the gender dimension in the brain

    Polymer-coated superparamagnetic iron oxide nanoparticles as T-2 contrast agent for MRI and their uptake in liver

    Get PDF
    Aim: To study the efficiency of multifunctional polymer-based superparamagnetic iron oxide nanoparticles (bioferrofluids) as a T-2 magnetic resonance contrast agent and their uptake and toxicity in liver. Materials & methods: Mice were intravenously injected with bioferrofluids and Endorem (R). The magnetic resonance efficiency, uptake and in vivo toxicity were investigated by means of magnetic resonance imaging (MRI) and histological techniques. Results: Bioferrofluids are a good T-2 contrast agent with a higher r(2)/r(1) ratio than Endorem. Bioferrofluids have a shorter blood circulation time and persist in liver for longer time period compared with Endorem. Both bioferrofluids and Endorem do not generate any noticeable histological lesions in liver over a period of 60 days post-injection. Conclusion: Our bioferrofluids are powerful diagnostic tool without any observed toxicity over a period of 60 days post-injection. Lay abstract: Several superparamagnetic iron oxide nanoparticles (SPIONs) preparations have been approved by US FDA for clinical use as MRI contrast agents. In recent years, we have been developing a synthetic multifunctional platform for SPIONs based on the use of polymers. In this report, we explored the diagnostic potential of these nanoparticles (herein called bioferrofluids) as an MRI contrast agent and their uptake in liver, without neglecting their toxicological effects. Results show that our bioferrofluids are a good T-2 contrast agent without any observed toxicity in liver
    corecore