436 research outputs found

    Intermittent turbulent dynamo at very low and high magnetic Prandtl numbers

    Full text link
    Context: Direct numerical simulations have shown that the dynamo is efficient even at low Prandtl numbers, i.e., the critical magnetic Reynolds number Rm_c necessary for the dynamo to be efficient becomes smaller than the hydrodynamic Reynolds number Re when Re -> infinity. Aims: We test the conjecture (Iskakov et al. 2007) that Rm_c actually tends to a finite value when Re -> infinity, and we study the behavior of the dynamo growth factor \gamma\ at very low and high magnetic Prandtl numbers. Methods: We use local and nonlocal shell-models of magnetohydrodynamic (MHD) turbulence with parameters covering a much wider range of Reynolds numbers than direct numerical simulations, but of astrophysical relevance. Results: We confirm that Rm_c tends to a finite value when Re -> infinity. The limit for Rm -> infinity of the dynamo growth factor \gamma\ in the kinematic regime behaves like Re^\beta, and, similarly, the limit for Re -> infinity of \gamma\ behaves like Rm^{\beta'}, with \beta=\beta'=0.4. Conclusion: Comparison with a phenomenology based on an intermittent small-scale turbulent dynamo, together with the differences between the growth rates in the different local and nonlocal models, indicate a weak contribution of nonlocal terms to the dynamo effect.Comment: 5 pages, 6 figure

    Influence of the definition of dissipative events on their statistics

    Full text link
    A convenient and widely used way to study the turbulent plasma in the solar corona is to do statistics of properties of events (or structures), associated with flares, that can be found in observations or in numerical simulations. Numerous papers have followed such a methodology, using different definitions of an event, but the reasons behind the choice of a particular definition (and not another one) is very rarely discussed. We give here a comprehensive set of possible event definitions starting from a one-dimensional data set such as a time-series of energy dissipation. Each definition is then applied to a time-series of energy dissipation issued from simulations of a shell-model of magnetohydrodynamic turbulence as defined in Giuliani and Carbone (1998), or from a new model of coupled shell-models designed to represent a magnetic loop in the solar corona. We obtain distributions of the peak dissipation power, total energy, duration and waiting-time associated to each definition. These distributions are then investigated and compared, and the influence of the definition of an event on statistics is discussed. In particular, power-law distributions are more likely to appear when using a threshold. The sensitivity of the distributions to the definition of an event seems also to be weaker for events found in a highly intermittent time series. Some implications on statistical results obtained from observations are discussed.Comment: 8 pages, 13 figures. Submitted to Astronomy&Astrophysic

    Regional-scale integration of multi-scale hydrological and geophysical data using a two-step Bayesian sequential simulation approach

    Get PDF
    Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances

    Recent AEM Case Study Examples of a Full Waveform Time-Domain System for Near-Surface and Groundwater Applications

    Get PDF
    Early time or high frequency airborne electromagnetic data (AEM) are desirable for shallow sounding or mapping of resistive areas but this poses difficulties due to a variety of issues, such as system bandwidth, system calibration and parasitic loop capacitance. In an effort to address this issue, a continued system design strategy, aimed at improving its early-channel VTEM data, has achieved fully calibrated, quantitative measurements closer to the transmitter current turn-off, while maintaining reasonably optimal deep penetration characteristics. The new design implementation, known as “Full Waveform” VTEM was previously described by Legault et al. (2012). This paper presents some case-study examples of a Full Waveform helicopter time-domain EM system for near-surface application

    Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds

    Get PDF
    The recognition of the harmful effects of ultraviolet radiation on the skin has led to the commercial development of inorganic and synthetic organic UV filters that can attenuate the negative effects of sunlight exposure. In addition, chemical moisturizers are extensively used in cosmetic products to improve the ability of skin to retain water. Whilst these chemicals have clear beneficial qualities, they may also have adverse effects such as contact sensitivity, oestrogenicity and even tumorigenic effects on human skin. Furthermore, the accumulation of such chemicals in the aquatic environment could be potentially harmful. Consequently, there is interest in exploiting safer alternatives derived from biological sources, especially from photosynthetic organisms such as cyanobacteria that have developed mechanisms for coping with high UV irradiation and desiccation. In order to overcome the detrimental effects of UV radiation, these microorganisms produce UV screening compounds such as mycosporine-like amino acids and scytonemin, which are good candidates as alternatives to current synthetic UV filters. In addition, extracellular substances produced by some extremophilic species living in hyper-arid habitats have a high water retention capacity and could be used in cosmetic products as moisturizers. In this review, we present an overview of the literature describing the potential of cyanobacterial metabolites as an alternative source for sunscreens and moisturizers

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes
    corecore