1,600 research outputs found

    Loss of SMAD4 Is Associated With Poor Tumor Immunogenicity and Reduced PD-L1 Expression in Pancreatic Cancer

    Get PDF
    Transforming Growth Factor β (TGFβ) is a key mediator of immune evasion in pancreatic ductal adenocarcinoma (PDAC), and the addition of TGFβ inhibitors in select immunotherapy regimens shows early promise. Though the TGFβ target SMAD4 is deleted in approximately 55% of PDAC tumors, the effects of SMAD4 loss on tumor immunity have yet to be fully explored. Using a combination of genomic databases and PDAC specimens, we found that tumors with loss of SMAD4 have a comparatively poor T-cell infiltrate. SMAD4 loss was also associated with a reduction in several chemokines with known roles in T-cell recruitment, which was recapitulated using knockdown of SMAD4 in PDAC cell lines. Accordingly, JURKAT T-cells were poorly attracted to conditioned media from PDAC cells with knockdown of SMAD4 and lost their ability to produce IFNγ. However, while exogenous TGFβ modestly reduced PD-L1 expression in SMAD4-intact cell lines, SMAD4 and PD-L1 positively correlated in human PDAC samples. PD-L1 status was closely related to tumor-infiltrating lymphocytes, particularly IFNγ-producing T-cells, which were more abundant in SMAD4-expressing tumors. Low concentrations of IFNγ upregulated PD-L1 in tumor cells in vitro, even when administered alongside high concentrations of TGFβ. Hence, while SMAD4 may have a modest inhibitory effect on PD-L1 in tumor cells, SMAD4 indirectly promotes PD-L1 expression in the pancreatic tumor microenvironment by enhancing T-cell infiltration and IFNγ biosynthesis. These data suggest that pancreatic cancers with loss of SMAD4 represent a poorly immunogenic disease subtype, and SMAD4 status warrants further exploration as a predictive biomarker for cancer immunotherapy

    The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -

    Full text link
    A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by means of a low intensity 20 GeV/c per nucleon ion beam obtained by fragmentation of a primary beam of Pb ions. Data have been collected with a single beam setting, over the range of nuclear charges 2<Z<~45 in various beam conditions and using different radiators. The charge Z and velocity beta resolutions have been measured.Comment: 4 pages, contribution to the ICRC 200

    The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India

    The AMS-RICH velocity and charge reconstruction

    Full text link
    The AMS detector, to be installed on the International Space Station, includes a Ring Imaging Cerenkov detector with two different radiators, silica aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to provide very precise measurements of velocity and electric charge in a wide range of cosmic nuclei energies and atomic numbers. The detector geometry, in particular the presence of a reflector for acceptance purposes, leads to complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The results of different reconstruction methods applied to test beam data as well as to simulated samples are presented. To ensure nominal performances throughout the flight, several detector parameters have to be carefully monitored. The algorithms developed to fulfill these requirements are presented. The velocity and charge measurements provided by the RICH detector endow the AMS spectrometer with precise particle identification capabilities in a wide energy range. The expected performances on light isotope separation are discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F. Bara

    Unusual presentation of Lisfranc fracture dislocation associated with high-velocity sledding injury: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Lisfranc fracture dislocations of the foot are rare injuries. A recent literature search revealed no reported cases of injury to the tarsometatarsal (Lisfranc) joint associated with sledding.</p> <p>Case presentation</p> <p>A 19-year-old male college student presented to the emergency department with a Lisfranc fracture dislocation of the foot as a result of a high-velocity sledding injury. The patient underwent an immediate open reduction and internal fixation.</p> <p>Conclusion</p> <p>Lisfranc injuries are often caused by high-velocity, high-energy traumas. Careful examination and thorough testing are required to identify the injury properly. Computed tomography imaging is often recommended to aid in diagnosis. Treatment of severe cases may require immediate open reduction and internal fixation, especially if the risk of compartment syndrome is present, followed by a period of immobilization. Complete recovery may take up to 1 year.</p

    The RICH detector of the AMS-02 experiment: status and physics prospects

    Full text link
    The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV. It is equipped with several subsystems, one of which is a proximity focusing RICH detector with a dual radiator (aerogel+NaF) that provides reliable measurements for particle velocity and charge. The assembly and testing of the AMS RICH is currently being finished and the full AMS detector is expected to be ready by the end of 2008. The RICH detector of AMS-02 is presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como 2007). Presenter: Rui Pereir

    Dual wavelength continuous wave laser using a birefringent filter

    Get PDF
    We report simultaneous dual wavelength continuous laser emission with minimum cavity elements. Tunable dual wavelength emission between 805 nm and 840 nm was observed with controlled peak separation around two nanometers, which corresponds to approximately one terahertz. Dual wavelength laser operation is possible using a novel intracavity two plate birefringent filtering element

    MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells

    Get PDF
    MicroRNAs (miRNAs) play important roles in normal cellular differentiation and oncogenesis. microRNA93 (mir-93), a member of the mir106b-25 cluster, located in intron 13 of the MCM7 gene, although frequently overexpressed in human malignancies may also function as a tumor suppressor gene. Using a series of breast cancer cell lines representing different stages of differentiation and mouse xenograft models, we demonstrate that mir-93 modulates the fate of breast cancer stem cells (BCSCs) by regulating their proliferation and differentiation states. In "claudin low" SUM159 cells, expression of mir-93 induces Mesenchymal-Epithelial Transition (MET) associated with downregulation of TGFβ signaling and downregulates multiple stem cell regulatory genes, including JAK1, STAT3, AKT3, SOX4, EZH1, and HMGA2, resulting in cancer stem cell (CSC) depletion. Enforced expression of mir-93 completely blocks tumor development in mammary fat pads and development of metastases following intracardiac injection in mouse xenografts. The effect of mir-93 on the CSC population is dependent on the cellular differentiation state, with mir-93 expression increasing the CSC population in MCF7 cells that display a more differentiated "luminal" phenotype. mir-93 also regulates the proliferation and differentiation of normal breast stem cells isolated from reduction mammoplasties. These studies demonstrate that miRNAs can regulate the states and fates of normal and malignant mammary stem cells, findings which have important biological and clinical implications. © 2012 Liu et al
    • …
    corecore