3,549 research outputs found

    The Evaluation of When English Rings a Bell (Revised Edition): Teachers' Perspectives

    Full text link
    This study was done to find out the teachers` opinions regarding the coursebook, When English Rings A Bell (revised edition), in terms of (1) the coursebook`s language content, (2) the presentation of English skills in the coursebook, and (3) the coursebook`s topic, subject content, and social values. The data of this study was the teachers` written and/or oral answers of the questions used as the evaluation guidelines as proposed by Cunningsworth (1995). The teachers stated that (a) the topics, (b) subjects content, and (c) social and cultural values presented in the coursebook were appropriate to the Indonesian people`s way of life by not differentiating in gender. In addition, although the book provided practices for all English skills, the book should include additional material to support them, for instance, recorded material on a cassette for listening practices. The book did not also include all language contents as proposed by Cuningsworth (1995)

    On invariance of plurigenera for foliations on surfaces

    Get PDF
    We show that if (Xt,Ft)t(X_t,\mathcal{F}_t)_t is a family of foliations with reduced singularities on a smooth family of surfaces, then invariance of plurigenera holds for sufficiently large mm. On the other hand, we provide examples on which the result fails, for small values of mm

    Electronic, dynamical and superconducting properties of CaBeSi

    Full text link
    We report first-principles calculations on the normal and superconducting state of CaBe(x)Si(2-x) (x=1), in the framework of density functional theory for superconductors (SCDFT). CaBeSi is isostructural and isoelectronic to MgB2 and this makes possible a direct comparison of the electronic and vibrational properties and the electron-phonon interaction of the two materials. Despite the many similarities with MgB2 (e.g. sigma bands at the Fermi level and a larger Fermi surface nesting), according to our calculations CaBeSi has a very low critical temperature (Tc ~ 0.4 K, consistent with the experiment). CaBeSi exhibits a complex gap structure, with three gaps at Fermi level: besides the two sigma and pi gaps, present also in MgB2, the appearance of a third gap is related to the anisotropy of the Coulomb repulsion, acting in different way on the bonding and antibonding electronic pi states.Comment: 6 pages, 5 figure

    Deep Learning for Galaxy Mergers in the Galaxy Main Sequence

    Get PDF
    Starburst galaxies are often found to be the result of galaxy mergers. As a result, galaxy mergers are often believed to lie above the galaxy main sequence: the tight correlation between stellar mass and star formation rate. Here, we aim to test this claim. Deep learning techniques are applied to images from the Sloan Digital Sky Survey to provide visual-like classifications for over 340 000 objects between redshifts of 0.005 and 0.1. The aim of this classification is to split the galaxy population into merger and non-merger systems and we are currently achieving an accuracy of 91.5%. Stellar masses and star formation rates are also estimated using panchromatic data for the entire galaxy population. With these preliminary data, the mergers are placed onto the full galaxy main sequence, where we find that merging systems lie across the entire star formation rate - stellar mass plane.Comment: 4 pages, 1 figure. For Proceedings IAU Symposium No. 34

    The cGAS Paradox:Contrasting Roles for cGAS-STING Pathway in Chromosomal Instability

    Get PDF
    Chromosomal instability (CIN) is an intricate phenomenon that is often found in human cancer, characterized by persisting errors in chromosome segregation. This ongoing chromosome mis-segregation results in structural and numerical chromosomal abnormalities that have been widely described to promote tumor evolution. In addition to being a driver of tumor evolution, recent evidence demonstrates CIN to be the central node of the crosstalk between a tumor and its surrounding microenvironment, as mediated by the cGAS-STING pathway. The role that cGAS-STING signaling exerts on CIN tumors is both complex and paradoxical. On one hand, the cGAS-STING axis promotes the clearance of CIN tumors through recruitment of immune cells, thus suppressing tumor progression. On the other hand, the cGAS-STING pathway has been described to be the major regulator in the promotion of metastasis of CIN tumors. Here, we review this dual role of the cGAS-STING pathway in the context of chromosomal instability and discuss the potential therapeutic implications of cGAS-STING signaling for targeting CIN tumors

    A travel guide to the canonical bundle formula

    Full text link
    We survey known results on the canonical bundle formula and its applications in algebraic geometry.Comment: 17 pages, to appear in the Proceedings of the conference Birational Geometry and Moduli Space

    Sorting of multiple molecular species on cell membranes

    Full text link
    Eukaryotic cells maintain their inner order by a hectic process of distillation of molecular factors taking place on the surface of their lipid membranes. To understand the properties of this molecular sorting process, a physical model of the process has been recently proposed [arXiv:1811.06760], based on (a) the phase separation of a single, initially dispersed molecular species into spatially localized sorting domains on the lipid membrane, and (b) domain-induced membrane bending leading to the nucleation of submicrometric lipid vesicles, naturally enriched in the molecules of the engulfed sorting domain. The analysis of the model has shown the existence of an optimal region of the parameter space where sorting is most efficient. Here, the model is extended to account for the simultaneous distillation of a pool of distinct molecular species. We find that the mean time spent by sorted molecules on the membrane increases with the heterogeneity of the pool (i.e., the number of distinct molecular species sorted) according to a simple scaling law, and that a large number of distinct molecular species can in principle be sorted in parallel on a typical cell membrane region without significantly interfering with each other. Moreover, sorting is found to be most efficient when the distinct molecular species have comparable homotypic affinities. We also consider how valence (i.e., the average number of interacting neighbors of a molecule in a sorting domain) affects the sorting process, finding that higher-valence molecules can be sorted with greater efficiency than lower-valence molecules

    Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom

    Get PDF
    The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS) helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100) to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.Comment: 7 figures, 12 pages, main text and supplementary materia

    The Horn, Kink and Step, Dale: from few GeV to few TeV

    Full text link
    Rich experimental data have been collected in heavy-ion collisions at high energies to study the properties of strongly interacting matter. As the theory of strong interactions, QCD, predicts asymptotic freedom, the created matter at sufficiently high temperature and density will be dominated by a state of quasi-free quarks and gluons referred to as the Quark-Qluon Plasma (QGP). Experimental signals for the onset of the QGP creation (the onset of the deconfinement) have been predicted within the statistical model for the early stage of nucleus-nucleus collisions. In this model the existence of two different phases is assumed: confined mater and the QGP, as well as a first order phase transition between them. Until recently, these predictions were confirmed only by the NA49 experiment at the CERN SPS. In this report recent results from STAR at RHIC/BNL and from ALICE at LHC/CERN, related to the onset of deconfinement, will be compared to published results from NA49
    • …
    corecore