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Abstract

The interaction of electrons with a periodic potential of atoms in crystalline solids gives
rise to band structure. The band structure of existing materials can be measured by
photoemission spectroscopy and accurately understood in terms of the tight-binding
model, however not many experimental approaches exist that allow to tailor artificial
crystal lattices using a bottom-up approach. The ability to engineer and study atom-
ically crafted designer materials by scanning tunnelling microscopy and spectroscopy
(STM/STS) helps to understand the emergence of material properties. Here, we use atom
manipulation of individual vacancies in a chlorine monolayer on Cu(100) to construct
one- and two-dimensional structures of various densities and sizes. Local STS measure-
ments reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves,
with tuneable dispersion. The experimental data are understood in terms of a tight-
binding model combined with an additional broadening term that allows an estimation
of the coupling to the underlying substrate.
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Atom manipulation by means of STM is a viable way of constructing atomically precise
artificial structures [1]. Among others, the technique can be used to engineer atomic scale
logic devices [2, 3], low dimensional magnetic systems [4–6] or atomic data storages [7–9].
As our abilities to manipulate atoms on a large scale are improving, the formation of atomically
designed artificial crystals becomes of particular interest driven by a demand for new materials
where the properties are defined by emerging quasiparticle states [10]. Common approaches
to build low-dimensional artificial materials by STM include confinement of electronic surface
states through precise assembly of individual atoms and/or molecules [11–14], self-assembly
of molecular networks [15,16] and manipulation of dangling bonds [17] or surface vacancies
[18]. The recent development of large-scale fully automated placement of atomic vacancies
on a chlorinated copper crystal surface [9] provides an excellent platform to explore various
lattice compositions. These vacancies were found to host a localized vacancy state in the
surface band gap, similar to dopants in semiconductors, allowing their combined electronic
states to be modelled by means of tight-binding approximation [19].
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Here, we present a study of artificial one- and two-dimensional structures built from Cl
vacancies in an otherwise perfect monolayer square lattice formed by chlorine atoms on a
Cu(100) surface. Using local electron tunnelling spectroscopy, we demonstrate that we are
able to reach system scales where the spectral properties no longer depend on size and which
we therefore consider to be in the limit of infinite lattice size. For structures with a sufficiently
large vacancy density, we observe quasiparticle Bloch waves that can be simulated by using a
tight-binding model. Similar wave patterns were reported previously in assembled chains of
Au atoms [14], which were best described in terms of a free electron model. Analysis of the
Bloch wave dispersion allows us to extract quasiparticle effective masses, which are found to
depend strongly on the chosen lattice structure.

A monolayer of chlorine atoms on Cu(100) exhibits a surface band gap Eg of about 7 eV
(see inset of Fig. 1a) as well as a shift in the substrate’s work function by 1.25 eV [20], sug-
gesting a significant charge transfer between the substrate and chlorine atoms and formation
of the interface dipole moment [21]. Theoretical calculations predict a charge of 0.5 electron
accumulated on chlorine atoms and depletion of the density of states (DOS) at the top-most
layer of the copper substrate [22]. Other materials with a similarly large surface band gap, e.g.
Cu2N on Cu(100) (Eg ∼ 4 eV) [23], NaCl bilayers on copper substrates (Eg ∼ 8.5 eV) [24],
and non-polar MgO films on Ag(100) (Eg ∼ 6 eV) [25], have found applications in studies
of elementary excitations in individual molecules and/or adatoms [3, 26–28]. The insulating
monolayers formed on the metal substrates have been shown to have a little effect on the va-
lence band maximum, however significantly affect the conduction band minimum, which was
found as high as ∼ 4 eV for NaCl bi- and tri-layers on copper [24]. In our case, a sharp step in
the differential conductance at ∼ 3.5 V denotes the conduction band minimum (Fig. 1a, black
curve). The precise onset of the band was determined as the maximum in the normalized
differential conductance dI/dV × V/I (see Fig. 5).

As previously reported by Drost et al. [19], when the Cl/Cu(100) interface possesses de-
fects in the form of missing chlorine atoms (dark square in the inset of Fig. 1a), a local-
ized electronic vacancy state is resolved at lower voltages ∼ 3.4 V (green curve Fig. 1a).
The vacancy state exhibits similarities to localized states observed on gold atoms adsorbed on
NiAl(110) [14], in the gap region of hydrogen-doped Si(100) surface [17], and on chlorine va-
cancies in NaCl/Cu(111) [24]. When two vacancies are brought close to each other by means
of atom manipulation [9], the spatial overlap of the wave functions leads to the formation
of bonding and anti-bonding orbitals [14,17,24]. These molecular orbitals can be effectively
described within the tight-binding model with their energy depending on the hopping term t
– a measure of the overlap of the two vacancy states through the underlying potential.

We built one-dimensional lattices of the Cl/Cu(100) vacancies of various lengths and lattice
spacing ({3,0}, {2,0} and {1,1}) as shown in Fig. 1. The notation {x , y} used here describes
spacing between adjacent vacancies in the horizontal and vertical directions, respectively, in
multiplies of the lattice constant a = 3.55 Å. Differential conductance (dI/dV) spectra, pre-
sented in Fig. 1, were acquired along chains of length 16, for all three spacing parameters.
The spectra reveal a shift of the band onset towards lower voltages and broadening of the spec-
tral features for the lattice of denser spacing. Both the shift and the band broadening result
from the increased overlap between neighbouring sites. The observed spectral features show
a correlation with the position within the chains, i.e. the band minimum measured on outer
vacancies is found at higher energies compared to that resolved on inner ones. The correlation
of the band minimum with the position within the chain is related to the broken translational
symmetry at the outer positions and leads to the appearance of zero-dimensional states [14].
This dependence is further corroborated for edge vacancies within denser lattices where the
effect is more pronounced (e.g. Fig. 1e). Spectra acquired on the chlorine atoms within the
chains show a similar spatial dependence of the band onset.
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In Fig. 1f, we plot the dependence of the band onset as a function of the chain length,
measured at the centre of each chain. For each lattice spacing, the band onset is found to
saturate, however at different lengths: the {3, 0} chains saturate at 3.35 eV already for length
3, the {2, 0} chains at 3.18 eV for length 5 and the {1, 1} chains at 3.1 eV for length 8. The
saturation of the band minimum implies an approach of the limit where edge effects no longer
play a role for the inner vacancies and the chains can be effectively treated in the limit of
infinite lattice size. Furthermore, the observed shift relates to the size of the hopping parameter
t which increases for shorter lattice spacing [19].
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Figure 1: Differential conductance spectra acquired on a chlorine vacancy in the Cl/Cu(100)
substrate and in artificial 1D lattices crafted from the vacancies. (a) dI/dV measurement taken
inside a chlorine vacancy (green) and on the bare Cl/Cu(100) substrate (black). Dots depict
positions where spectra were taken. The inset shows an I-V curve acquired from -4.5 to 4.0
V where the surface band gap of Eg ∼ 7 eV is clearly visible. (b) Sketch denoting the energy
level of the vacancy state with respect to the band continuum. (c, d, e) dI/dV spectra taken on
vacancy sites and/or chlorine interstices (locations indicated by coloured dots in the insets)
on lattices with 16 vacancy sites for spacing configurations {3,0} (c), {2, 0} (d) and {1, 1} (e).
(f) Evolution of the band onset as a function of lattice spacing and lattice size. Data points
indicate the position of the band onset extracted from spectra taken on the middle vacancy
of each lattice. In the case of an even-length chain, the averaged value measured on the two
centre vacancies is shown. STM images were acquired in constant current mode I = 2 nA and
V = 500 mV. All scale bars are 2 nm.

To further investigate the band formation, we built two-dimensional structures with vary-
ing lattice spacing, ({3,3}, {2,3}, {2, 2}) as well as ‘stripes’ and ‘checkerboard’ arrays, all of
varying lattice size (Fig. 2). For 2D lattices, the notation {x , y} denotes the lattice spacing
in the x and y directions in units of the lattice constant a. Moving inward along the diago-
nal of each structure, the position of the band onset shifts towards lower energies for denser
and larger lattices, similar to the 1D lattices. In the case of the stripes lattice we observe two
band onsets, E1 = 2.8 eV and E2 = 3.1 eV, measured at the centre vacancy (see Fig. 2g). We
attribute these to the two different lattice constants along the lattice diagonals, a1 = 0.51 nm
and a2 = 0.69 nm. Assuming that the hopping parameter is exponentially dependent on the
distance [19] and the bandwidth is linearly proportional to the hopping parameter t, the band
is expected to be symmetric around the energy E = 3.4 eV of a single vacancy. We estimate
the widths of the respective bands to be W1 ∼ 1.2 eV and W2 ∼ 0.6 eV, leading to a ratio
W1/ W2 ∼ 2. This ratio is somewhat higher than the ratio between the hopping parameters
t(a1)/t(a2) ∼ 1.2, suggesting that another effect may play a role, affecting the width and/or
position of the band, e.g. an electric field due to positively charged neighbouring vacancies
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Figure 2: Analysis of artificial 2D lattices by chlorine vacancies of Cl/Cu(100). (a, b, c, d, e)
Differential conductance spectra measured along diagonals of the lattices with spacing {3, 3}
(a), {2, 3} (b), {2, 2} (c) and with stripes (d) and checkerboard (e) patterns. Coloured dots
denote the positions where the spectra were acquired. (f) Evolution of band onset as a function
of lattice spacing and lattice size. Band onset was extracted from the spectra taken in the
middle of the lattices. (g) Band onset as a function of lattice density, i.e. number of vacancies
divided by number of total positions in the unit cell. STM images were acquired in constant
current mode I = 2 nA and V = 500 mV. All scale bars 2 nm.

observed at polar insulating surfaces. Such an electric field can cause a shift of the band onset
towards lower energies, which is expected to be larger for denser lattices [18].

The checkerboard lattice (Fig. 2e) was found to be more sensitive to relatively high tun-
nelling currents than lattices with lower vacancy coverage. For large tunnelling current and
voltage values (e.g. > 2 nA at ∼ 4.7 V), we observed chlorine atoms changing their posi-
tion, rendering the structure unstable. For this reason, instead of acquiring dI/dV spectra, we
measured the dependence of the tip-sample distance z as a function of sample voltage in con-
stant current mode, i.e. dz/dV curves, that qualitatively resemble the normalized differential
conductance dI/dV×V/I (Fig. 5).

Apart from preserving the lattice integrity, the dz/dV measurement mode also provides suf-
ficient sensitivity to detect standing wave modes in some of the lattices that are not visible in
dI/dV mode (see Methods for details). Fig. 3 shows dz/dV maps acquired on the checkerboard
(panels a-d) and stripes (panels j-k) lattices. Interestingly, the modes are resolved very sym-
metric in the x and y directions, i.e. the number of protrusions in both directions is equivalent,
even though the unit cell of the stripes lattice is highly asymmetric.

To shine more light onto the standing wave pattern, we performed numerical calculations
of artificial lattices of size 8×8 using a tight-binding approach that effectively simulate dz/dV
maps (Figs. 3e-h, l-n), which are proportional to the density of states (see Methods for details).
The observed modes can be described in terms of two-dimensional confinement modes with
k-vectors kx = Nπ/L and ky = Mπ/L, where L is the width of the lattice. The experimentally
observed modes resemble some of the calculated modes with N=M (Fig. 6). However, the ex-
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perimental data show a richer structure with the links connecting the very bright protrusions
in x and y direction. Furthermore, the experimentally observed modes are gradually trans-
forming from one mode to another with an increasing number of lobes. At certain energies
some of the lobes are not spherical, but rather have an elongated shape, that splits into two
with increasing voltage.

i kj

l nm

2775 meV 3025 meV 3125 meV

5 160pm/V 15 150pm/V 50 200pm/V

e gf h

a cb d 2970 meV2870 meV2830 meV 2920meV

25 250pm/V 40 230pm/V 160 330pm/V 40 200pm/V

Figure 3: dz/dV maps acquired on checkerboard and stripes lattices. (a, b, c, d) dz/dV maps
taken on an 8×8 checkerboard lattice at different energies. (e, f, g, h) Corresponding nu-
merical calculations using a tight-binding model including an additional hybridization term.
(i, j, k) and (l, m, n) Similar to (a–d) and (e–h) for an 8×8 stripes lattice. All scale bars 2 nm.

This smooth crossover can be reproduced by including the coupling of the confined modes
to the electronic bath underneath. This interaction, which is mathematically represented by
a self-energy term with finite imaginary part, leads to a finite lifetime of the states and a
broadening of the spectral function, which consequently overlap neighbouring energy states
and alter the appearance of the modes (see Methods for details on the numerical calculations).
The addition of this hybridization term yields a DOS profile composed from the mixture of
many individual modes that can no longer be resolved, and resembles up to very fine details
the experimental STM maps, including the smooth crossover. Similar broadening of the energy
modes was also attributed to strong electron-phonon coupling [24]. As such, the experimental
modes have to be understood as coming from the mixture of many individual modes due to
the finite coupling of the lattice to the underlying copper, so that at a particular energy we do
not observe a single confined mode, but a weighted mixture of the neighbouring modes.

In a similar manner, we calculated the DOS on the stripes lattice, where the distance be-
tween vacancies along two lattice directions is not equal. We included two different hopping
terms in our calculations in order to properly reproduce the experimental data. If only the
hopping term along the direction of the stripes is considered, the numerically resolved modes
within the chains are decoupled from each other and do not reflect the experimentally ob-
served patterns (Figure 7). Comparison of numerical results with the experimental images
allows to directly extract the effective hopping parameters for the effective square lattices. In
our numerical simulations we used a model with only first neighbour hopping term of -215
meV, that reproduces the features of checkerboard lattice very well, but fails to capture the
features of stripes lattice. However, the tight binding model with first and second neighbour
hopping parameters -139 meV and -38 meV, respectively, can reproduce both the checkerboard
and stripes lattice patterns to a great extent.

The previous discussion requires investigation of the numerical and experimental dz/dV
maps one by one and identify the interference patterns. The emergence of dispersive modes
within the maps can be explored systematically using the quantitative fast Fourier transform
(FFT) analysis of these dz/dV maps images (Figs. 4a-f). In the following, we calculate the
expectation value of the square of the k-vector 〈k2〉 of each FFT image, thus assigning a single
value to a complete dz/dV map (see Methods for details on how the 〈k2〉 values were calcu-
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Figure 4: Fourier analysis of the dz/dV maps. (a, b, c, d, e, f) Evolution of the Fourier map for
the checkerboard lattice at different energies, corresponding to dz/dV maps presented in Figs.
3b, c, d and i, j, k, respectively. Increasing energy leads to a shift of the maximal intensity
towards higher k-vector values. (g) Evolution of the expectation value of the square of the
momentum vs. the energy for checkerboard (purple) and stripes lattice (green) in a wide
energy range. Dashed lines define the energy intervals within which the dispersive modes are
observed in each lattice. (h) Dispersion plots E vs. 〈k2〉 for the energy intervals marked in (g).
The experimental and theory data points are represented by full and open circles, respectively.
Solid lines show linear fits, from which the effective masses of experimental observed modes
are extracted.

lated). Plotting the energy E (i.e. the applied bias voltage) as a function of 〈k2〉 we provide
a dispersion curve that allows to systematically identify the energy regions where an interfer-
ence pattern is visible. Fig. 4h shows the obtained dispersion diagrams for the checkerboard
in the energy interval 2750 meV to 3140 meV, and for the stripes lattice in the energy interval
2775 meV to 3175 meV. The full E vs. 〈k2〉 plots are shown in Fig. 4g.

We performed linear fits to the E vs. 〈k2〉 plots in order to extract effective electron masses
for the checkerboard meff = 1.470 ± 0.034 me and for the stripes lattice meff = 0.131 ± 0.025
me, where me is the free electron mass. One would expect the stripes lattice, being highly
anisotropic, to yield different effective masses for the directions parallel and perpendicular to
the stripes. However, the weight in the FFT maps is found predominantly along the kx and
ky axis, which are rotated 45 degrees with respect to the stripes. Therefore, a single value
for the effective mass suffices to describe the observed standing wave patterns. The obtained
values suggest that quasiparticle waves in the checkerboard lattice are heavier than those in
the stripes lattice. While the calculations confirm this observation (theory: checkerboard:
meff = 0.98 ± 0.06 me and stripes: meff = 0.22 ± 0.016 me), intuitively, one might expect the
checkerboard lattice, being denser than the stripes lattice, to provide greater band width due to
larger hopping parameters, and therefore to yield a lower effective mass. The dispersive prop-
erties found from the analysis in Fig. 4 should therefore be considered as phenomenological
only.

Conclusion

Engineering artificial lattices by means of atom manipulation of chlorine vacancies in the
Cl/Cu(100) substrate demonstrate a way to craft artificial one- and two-dimensional mate-
rials with tuneable electronic properties. We explore the emergent band formation as we
build lattices of varying structure, density and size. For all lattices studied, the bottom of the
emerging band is found to shift towards lower energies, in accordance to the tight-binding
model, as the lattice size or density is increased. Furthermore, we find that the band onset
saturates for larger structures, implying that the effect of finite size can be neglected. In the
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case of two-dimensional checkerboard- and stripe shaped lattices, we observe standing Bloch
waves. These patterns are well explained using a tight-binding model that includes coupling
to the electron bath. Surprisingly, the effective mass of the observed Bloch waves is found
to depend strongly on the lattice geometry. Our work provides a testing ground for future
designer materials where the electronic properties can be defined a priori.
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Methods

Preparation of chlorine terminated Cu(100): Cu(100) crystals were cleaned by repeated
cycles of Argon sputtering and subsequent annealing at 550 ◦C. The chlorine terminated
Cu(100) substrate was prepared by thermal evaporation of anhydrous CuCl2 powder from
a quartz crucible heated to 300 ◦C. Clean Cu(100) crystals are heated to 150 ◦C before, during
and after the deposition for 10 minutes at each step [9]. The quality of the surface was verified
with low-energy electron diffraction and STM.

Acquisition of dz/dV maps: The arrangement of chlorine atoms in the checkerboard lattice
is very sensitive to large tunnelling currents; a current exceeding I > 1 µA frequently caused
unintended displacement of the atoms. Such high currents are reached whilst acquiring dif-
ferential conductance spectra (dI/dV), and cause the entire structure to collapse. In order to
qualitatively extract the local density of states (DOS) in the checkerboard and stripes lattices,
we used a method where, instead of acquiring dI/dV spectra, we recorded the tip-sample dis-
tance z as a function of applied bias voltage V. The time constant of the feedback-loop was
much smaller (t = 25 µs) than the time set to measure a single data-point (t ∼ 1 s), ensuring
thus that the tip had enough time to stabilize. In this mode the tunnelling current was kept
constant at I= 500 pA. In the next step a numerical derivation of a z vs. V curve, i.e. the dz/dV
curve, has been extracted (see Fig. 5). As the tunnel current I is exponentially proportional to
the tip-sample distance z,

I(z) = AVe−2
p

2mφ
ħh z , (1)

where A is a constant, V the bias voltage, m the mass of the tunnelling electron, φ the height
of the tunnelling barrier and ħh the reduced Planck constant. Extracting z as a function of the
tunnelling current and the applied bias voltage results in

z =
ln( I

V )− ln(A)

−2
p

2mφ
ħh

. (2)

Derivation of the distance z to voltage gives

dz
dV
∝

dI
dV

V
I

. (3)
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Figure 6: Numerical calculations on checkerboard lattice using a tight-binding model. Stand-
ing wave patterns acquired from the numerical calculations with the hybridization term set to
zero. The integers N and M denote number of modes for kx and ky axis.

As can be seen from (3), the dz/dV is linearly proportional to the normalized differential
conductance spectra (dI/dV×V/I), which in turn is proportional to local DOS.

dz/dV maps have been acquired in constant current mode, where consecutive topography
images have been taken on the same area at different bias voltages in 10 mV intervals for
checkerboard lattices and in 50 meV intervals for stripes lattices. The consecutive images
have been subtracted, thus providing the height difference dz for each point of the topography
images for the respective voltage difference.

Extracting 〈k2〉 values: The acquired dz/dV maps were transformed into FFT maps as those
shown in Figure 4. Each pixel of the FFT image carries information about the intensity I, i.e.
weight, of the corresponding k-vector value. In the next step the intensity and the correspond-
ing k-vector value are squared, i.e. I2 and k2, respectively. The profiles along k2

x axis, i.e. k2
y

= 0 and along k2
y axis, i.e. k2

x = 0 are normalized by the sum of I2 leading to expectation
values 〈k2

x〉 and 〈k2
y〉, respectively. The dz/dV maps exhibit noise signal with very small real-

space wavelength, corresponding to a large k-vector, thus we calculate the expectation values
considering only 3 points left and 3 points right from the maximal I2. Profiles along k2

y and
k2

y axis appear identical and we thus calculate the expectation value 〈k2〉 = (〈k2
x〉+〈k

2
y〉)/2.

Numerical calculations: We performed numerical calculations for a model Hamiltonian de-
fined on two different geometries: the checkerboard lattice and the stripes lattice. In both
situations the size of the lattice we considered is exactly the same as in the experiment. The
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t1

t2

t1 = –139 meV, t2 = –38 meV

t1 = –215 meV, t2 = 0 meV

Figure 7: Numerical calculations on stripes lattice using a tight-binding model. Standing wave
pattern within the stripes lattice has been simulated using nearest neighbour and next nearest
neighbour hoping terms (top row) or nearest neighbour hopping term only (bottom row).
Experimental data are better reproduced using both the nearest and next-nearest hopping
term.

calculations are performed in the tight-binding approximation using a Hamiltonian with local
orbitals in the form

H =
∑

i j

t i jc
†
j ci , (4)

where the parameters t i j are the elements of the overlap matrix between states localized within
the chlorine vacancies and defined as

t i j = 〈ψi|H |ψ j〉, (5)

where c†
j and ci are creation and annihilation operators at sites j and i, respectively.

In our calculations, we use a value of -139 meV for first neighbour hopping term t1 and
a value of -38 meV for second neighbour hopping term t2. Furthermore, to simulate the
potential well we use the edge potential of 38 meV for the checkerboard lattice and 80 meV,
for the stripes lattice.

The effect of the hybridization with the metallic bath is taken into account by means of a
self-energy parameter with finite imaginary part, that enters the Dyson equation of the Green
function. For simplicity we assume the self-energy term to be site-independent and diagonal,
which allows to precisely reproduce the experimental features in a wide energy range. The
Green function is thus defined as follows:

G(E) = (E −H −Σ)−1, (6)

with self-energy term defined as
Σ= iδ, (7)

where δ = 40 meV. Within the previous Green function, the density of states at the site i is
given by

ρi(E) = Im(Gii(E)). (8)

The spatially resolved DOS is calculated assuming that the local state ψi centred in ri has the
form

ψi(r) = Ne−(r−ri )2/σ2, (9)

with σ = 0.9d, where d is the first neighbour vacancy-vacancy distance.
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Theoretical calculations of the artificial checkerboard lattice of size 8x8 using tight-binding
approach with t = –215 meV without hybridization term are shown in Figure 6, showing the
individual modes. In two dimensions, the patterns are characterized by two vectors kx and
ky , that are independent of each other. The vectors are defined as kx = Nπ/L and ky = Mπ/L
where N, M = (1, 2, 3, . . . , 8) are the mode numbers and L is the size of the lattice (L = 8
in our case). In order to get agreement with the experiment, a finite hybridization with the
metal is needed. Furthermore, in the case of the stripes lattice, an additional next nearest
neighbour hopping term is needed. In Figure 7 we show calculations for the stripes lattice
using the tight-binding model without hybridization term, (i) with nearest neighbour and next
nearest neighbour hopping term and (ii) with nearest neighbour hopping term only. The best
agreement with the experimental results is found when both terms are included.
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