450 research outputs found

    Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation

    Get PDF
    Weekly measurements of surface height change were made at an accumulation forest of 100 stakes at Summit, Greenland, over a 2-year period (17 August 2000 to 8 August 2002). On average, the surface height relative to the stakes increased 64 (±4.8) cm in the first year and 65 (±5.3) cm in the second, identical to the average (65 ± 4.5 cm yr−1) previously reported for the period 1991–1995 in a similar forest 28 km to the southwest. The continuous 2-year data set indicates that the rate of surface rise was not constant, with the summers of 2001 and 2002 both showing markedly slower increases. On-site weather observations suggest that more new snow fell during the summer months than in any other season, consistent with results from previous snow pit and modeling studies yet apparently at odds with the slow rate of height increase. Density profiles from a series of 1-m-deep snow pits sampled monthly reveal that the thickness of the most recent year of accumulated snow (25 cm water equivalent) decreased rapidly between late May and early July, and the layers remained thin through early September. The thinning of the top year is clearly due to compaction in the snowpack. Combining the observed variations in annual layer thickness with a linear height increase based on assumed constant accumulation at 0.18 cm d−1 explains much of the variation in surface height found in the stake measurements. Estimated surface height changes can be forced to exactly match the stake measurements by combining changes in annual layer thickness with a variable accumulation rate over the intervals between pits. This exercise suggests that during the 2 years of this study a consistent seasonal pattern in accumulation was not apparent, rather the intervals indicated to have had enhanced accumulation in the first year (August–October and March–April) apparently had reduced accumulation in the second year

    Dynamical Characterization and Stabilization of Large Gravity-Tractor Designs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76167/1/AIAA-32554-693.pd

    A Second Large Subglacial Impact Crater in Northwest Greenland?

    Get PDF
    Following the discovery of the Hiawatha impact crater beneath the northwest margin of the Greenland Ice Sheet, we explored satellite and aerogeophysical data in search of additional such craters. Here we report the discovery of a possible second subglacial impact crater that is 36.5 km wide and 183 km southeast of the Hiawatha impact crater. Although buried by 2 km of ice, the structure's rim induces a conspicuously circular surface expression, it possesses a central uplift and it causes a negative gravity anomaly. The existence of two closely-spaced and similarlysized complex craters raises the possibility that they formed during related impact events. However, the second structure's morphology is shallower, its overlying ice is conformal and older, and such an event can be explained by chance. We conclude that the identified structure is very likely an impact crater, but it is unlikely to be a twin of the Hiawatha impact crater

    Estimation of Carbon Sequestration by Combining Remote Sensing and Net Ecosystem Exchange Data for Northern Mixed-Grass Prairie and Sagebrush–Steppe Ecosystems

    Get PDF
    Carbon sequestration was estimated a northern mixed-grass prairie site and a sagebrush–steppe site in southeastern Wyoming using an approach that integrates remote sensing, CO2 flux measurements, and meteorological data. Net ecosystem exchange (NEE) of CO2 was measured using aircraft and ground flux techniques and was linearly related to absorbed photosynthetically active radiation (APAR). The slope of this relationship is the radiation use efficiency (ε = 0.51 g C/MJ APAR); there were no significant differences in the regression coefficients between the two sites. Furthermore, ecosystem chamber measurements of total respiration in 1998 and 1999 were used to develop a functional relationship with daily average temperature; the Q10 of the relationship was 2.2. Using the Advanced Very High Resolution radiometer. Normalized Difference Vegetation Index and meteorological data, annual gross primary production and respiration were calculated from 1995 to 1999 for the two sites. Overall, the sagebrush– steppe site was a net carbon sink, whereas the northern mixed-grass prairie site was in carbon balance. There was no significant relationship between NEE and APAR for a coniferous forest site, indicating this method for scaling up CO2 flux data may be only applicable to rangeland ecosystems. The combination of remote sensing with data from CO2 flux networks can be used to estimate carbon sequestration regionally in rangeland ecosystems

    A Possible Second Large Subglacial Impact Crater in Northwest Greenland

    Get PDF
    Following the discovery of the Hiawatha impact crater beneath the northwest margin of the Greenland Ice Sheet, we explored satellite and aerogeophysical data in search of additional such craters. Here we report the discovery of a possible second subglacial impact crater that is 36.5 km wide and 183 km southeast of the Hiawatha impact crater. Although buried by 2 km of ice, the structure's rim induces a conspicuously circular surface expression, it possesses a central uplift and it causes a negative gravity anomaly. The existence of two closely-spaced and similarlysized complex craters raises the possibility that they formed during related impact events. However, the second structure's morphology is shallower, its overlying ice is conformal and older, and such an event can be explained by chance. We conclude that the identified structure is very likely an impact crater, but it is unlikely to be a twin of the Hiawatha impact crater

    Analytical method for perturbed frozen orbit around an Asteroid in highly inhomogeneous gravitational fields : A first approach

    Get PDF
    This article provides a method for nding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the heterogeneous body is rstly stated, in polar-nodal coordinates, which takes into account the coecients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coefficients. The project has been developed in collaboration with the European Space Agency (ESA)

    The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    Get PDF
    The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin
    • …
    corecore