671 research outputs found

    Nonlinear screening in two-dimensional electron gases

    Get PDF
    We have performed self-consistent calculations of the nonlinear screening of a point charge Z in a two-dimensional electron gas using a density functional theory method. We find that the screened potential for a Z=1 charge supports a bound state even in the high density limit where one might expect perturbation theory to apply. To explain this behaviour, we prove a theorem to show that the results of linear response theory are in fact correct even though bound states exist.Comment: 4 pages, 4 figure

    The role of surface plasmons in the decay of image-potential states on silver surfaces

    Get PDF
    The combined effect of single-particle and collective surface excitations in the decay of image-potential states on Ag surfaces is investigated, and the origin of the long-standing discrepancy between experimental measurements and previous theoretical predictions for the lifetime of these states is elucidated. Although surface-plasmon excitation had been expected to reduce the image-state lifetime, we demonstrate that the subtle combination of the spatial variation of s-d polarization in Ag and the characteristic non-locality of many-electron interactions near the surface yields surprisingly long image-state lifetimes, in agreement with experiment.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Nonlinear screening and stopping power in two-dimensional electron gases

    Get PDF
    We have used density functional theory to study the nonlinear screening properties of a two-dimensional (2D) electron gas. In particular, we consider the screening of an external static point charge of magnitude Z as a function of the distance of the charge from the plane of the gas. The self-consistent screening potentials are then used to determine the 2D stopping power in the low velocity limit based on the momentum transfer cross-section. Calculations as a function of Z establish the limits of validity of linear and quadratic response theory calculations, and show that nonlinear screening theory already provides significant corrections in the case of protons. In contrast to the 3D situation, we find that the nonlinearly screened potential supports a bound state even in the high density limit. This behaviour is elucidated with the derivation of a high density screening theorem which proves that the screening charge can be calculated perturbatively in the high density limit for arbitrary dimensions. However, the theorem has particularly interesting implications in 2D where, contrary to expectations, we find that perturbation theory remains valid even when the perturbing potential supports bound states.Comment: 23 pages, 15 figures in RevTeX

    Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    Get PDF
    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important directions providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to make graphene Dirac states spin-polarized. Here, we report on absolutely new promising pathway to create spin-polarized Dirac states based on coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We demonstrate how the spin-helical Dirac states are formed in graphene deposited on the surface of BiTeCl. This coupling induces spin separation of the originally spin-degenerate graphene states and results in fully helical in-plane spin polarization of the Dirac electrons.Comment: 5 pages, 3 figure

    Inelastic lifetimes of hot electrons in real metals

    Get PDF
    We report a first-principles description of inelastic lifetimes of excited electrons in real Cu and Al, which we compute, within the GW approximation of many-body theory, from the knowledge of the self-energy of the excited quasiparticle. Our full band-structure calculations indicate that actual lifetimes are the result of a delicate balance between localization, density of states, screening, and Fermi-surface topology. A major contribution from dd-electrons participating in the screening of electron-electron interactions yields lifetimes of excited electrons in copper that are larger than those of electrons in a free-electron gas with the electron density equal to that of valence (4s14s^1) electrons. In aluminum, a simple metal with no dd-bands, splitting of the band structure over the Fermi level results in electron lifetimes that are smaller than those of electrons in a free-electron gas.Comment: 4 papes, 2 figures, to appear in Phys. Rev. Let

    Direct resolution of unoccupied states in solids via two photon photoemission

    Get PDF
    Non-linear effects in photoemission are shown to open a new access to the band structure of unoccupied states in solids, totally different from hitherto used photoemission spectroscopy. Despite its second-order nature, strong resonant transitions occur, obeying exact selection rules of energy, crystal symmetry, and momentum. Ab-initio calculations are used to demonstrate that such structures are present in low-energy laser spectroscopy experimental measurements on Si previously published. Similar resonances are expected in ultraviolet angle-resolved photoemission spectra, as shown in a model calculation on Al.Comment: 12 pages, including 4 figure

    Ultrafast electron dynamics in metals

    Get PDF
    During the last decade, significant progress has been achieved in the rapidly growing field of the dynamics of {\it hot} carriers in metals. Here we present an overview of the recent achievements in the theoretical understanding of electron dynamics in metals, and focus on the theoretical description of the inelastic lifetime of excited hot electrons. We outline theoretical formulations of the hot-electron lifetime that is originated in the inelastic scattering of the excited {\it quasiparticle} with occupied states below the Fermi level of the solid. {\it First-principles} many-body calculations are reviewed. Related work and future directions are also addressed.Comment: 17 pages, two columns, 13 figures, to appear in ChemPhysChe

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio
    corecore