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We have performed self-consistent calculations of the nonlinear screening of a point charge Z in a
two-dimensional electron gas using a density functional theory method. We find that the screened
potential for a Z = 1 charge supports a bound state even in the high-density limit where one might
expect perturbation theory to apply. To explain this behavior, we prove a theorem to show that the
results of linear response theory are in fact correct even though bound states exist.
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Screening is a fundamental property of an electron gas
in arbitrary dimensions. The example of two dimensions
is of particular interest because of the possible realization
of quasi-two-dimensional systems in a variety of con-
texts: semiconductor heterostructures [1], image or band-
gap surface states at metal surfaces [2], electrons on the
surface of liquid helium [3], and layered materials [4]. In
all of these cases, the interaction of external charges with
the two-dimensional electron gas (2DEG) is a problem of
both fundamental and practical interest. For example, the
transport of electrons in a 2DEG is often limited by
charged impurity scattering and a detailed knowledge
of the scattering potential is needed for an accurate
determination of the electron mobility [1]. Scanning tun-
neling microscopy offers an even more direct means of
determining the screening response of a quasi-2DEG
through the observation of adsorbate-induced Friedel
oscillations [5]. Still another class of problems involves
the interaction with moving charges as might arise in low-
energy electron scattering [6] or tunneling experiments
[7]. In this case, the dynamic response of the 2DEG is
important in that electronic excitation, and, hence, en-
ergy loss, will occur.

A charged impurity or projectile typically represents a
strong perturbation and a nonlinear screening theory is in
general needed to account for the modifications of the
local electronic structure. However, in certain situations
the screened impurity potential may be relatively weak
and therefore amenable to a perturbative treatment. This
is usually the method adopted to deal with donor impu-
rities that are spatially removed from the 2DEG within a
heterostructure [1], although it is rare to find quantitative
agreement between theory and experimentally measured
mobilities [8]. The situation of acceptor impurities within
the gas is a much more severe perturbation, and quite
dramatic effects can arise as a result of the modified
electronic structure [9,10]. In such situations, the screen-
ing response has to be determined nonlinearly.
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One of our objectives in this Letter is to provide a
fully self-consistent description of the nonlinear screen-
ing in an ideal 2DEG within the context of density
functional theory. A second objective is to use these
calculations to establish the range of validity of linear
response theory. Somewhat surprisingly, this latter objec-
tive is more subtle than anticipated as a result of a pecu-
liarity of potential scattering in 2D, namely, the fact that
any purely attractive potential always has at least one
bound state [11], in marked contrast to the situation in
3D. For a positively charged impurity, we in fact encoun-
ter a situation in which the screened potential supports
a bound state even in the high-density limit where
one would intuitively expect a perturbative treatment
to be valid. To resolve this apparent paradox, we prove
what will be referred to as the high-density screening
theorem which states that the screening charge can
indeed be calculated perturbatively even when bound
states exist. In this way, we are able to justify the use of
perturbation theory when at first sight it would seem
inapplicable.

The problem we address is the nonlinear screening of a
stationary point charge, Z, located in the plane of a
2DEG. The latter is treated as ideal in the sense that the
electrons are confined to the plane. Of course in real
applications, such as a heterostructure, a more accurate
treatment of the electronic states is required. We ignore
these complications in order to focus on those aspects of
nonlinear screening which are expected to be indepen-
dent of these details. To stabilize the system, the electrons
move in the presence of a uniform neutralizing positive
background. In addition, we assume the electrons to have
an isotropic effective mass m* and to be immersed in an
extended dielectric with permittivity &. We use the effec-
tive Bohr radius, a, = eh?/m*e?, as the unit of length
and the effective Hartree, H = ¢?/ga,, as the unit of
energy. The density of the gas, ng, is characterized by
the density parameter r; = 1/, /7ny.
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The static screening response of the 2DEG is deter-
mined by solving self-consistently the two-dimensional
Kohn-Sham equations:

= 3V2i(0) + Ave(Dii(r) = Exp(r), (D)
where the effective potential is given by
Averp(r) = vex(r) + Avy(r) + Avy(r). 2)

Here, v = —Z/r is the external potential and Avy
is the Hartree potential due to the electronic screening
density, An(r) = n(r) — ny. The change in the exchange-
correlation potential, Av, (r) = v, [n(r)] — ve[ngl, is
defined in the local density approximation using the para-
metrization of the 2D exchange-correlation energy given
in Ref. [12].
The total screening charge is given by

An(r) = D 1) + DTl = [P, 3)
b i

where the first sum extends over all bound states of the
effective potential, and the second extends over all occu-
pied continuum states up to the Fermi level Ep. We
assume that each spatial orbital is doubly occupied for
spin. The scattering states ;(r) are shifted asymptoti-
cally relative to the free-particle solutions #?(r) by a
phase 7,,(E). These scattering phase shifts are related
to the total screening charge according to the 2D Friedel
sum rule (FSR) [13]

2 (o)
ZrsR = — > Nul(Ep). 4)

m=—o0o

Details of the self-consistent solution of Eqgs. (1) and (2)
will be presented elsewhere.

We begin by considering the case of a negatively
charged impurity (Z = —1), such as an antiproton or
acceptor state in a semiconductor. Figure 1 presents the
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FIG. 1. Comparison of nonlinear and linear screened poten-
tials: nonlinear with exchange correlation (solid), nonlinear
Hartree potential (short-dashed), linear Hartree potential with
LFC (chain); Z= —1, r, = 4.
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self-consistent effective potential Av.g for r, = 4 (solid
curve) as a function of the distance from the impurity.
This potential repels electrons almost completely from
the impurity’s vicinity, leaving exposed a positively
charged disk of radius R =~ r; which neutralizes the im-
purity charge. As is the case in 3D, this behavior cannot
be reproduced in a linear theory. The screened Z = —1
potential does not support bound states for any r, value,
as might have been expected. We mention this since it has
been claimed [14] that the introduction of a negative test
charge into a 2D gas can give rise to a potential which is
sufficiently strong to bind an electron.

To make contact with this earlier work, we compare in
Fig. 1 the nonlinearly screened potentials with those
obtained on the basis of linear response theory. The chain
curve shows the linear response Hartree potential (v, +
Awvpy) as obtained when local field corrections (LFC) are
included in the determination of the electron screening
density [14]. This potential has a large attractive region in
real space and supports a bound state for a unit negative
test charge of one electron mass. This observation led to
the suggestion of a possible pairing mechanism that could
be responsible for a correlation-induced instability at low
densities [14]. Such a conclusion, however, is invalid on
two counts. First, the screening of the impurity is strongly
nonlinear. The dashed curve in Fig. 1 shows the corre-
sponding Hartree potential when the nonlinear screening
density is used. It has a much shallower attractive region.
But more importantly, an electron, as opposed to a nega-
tive test charge, also feels the effect of the induced xc
potential. With this contribution included in the full non-
linear potential Av.; (solid curve), there is no tendency
for bound state formation, as confirmed numerically.

The results for a positive impurity are quite different
in that the attractive screened potential supports
bound states for all densities of physical interest (includ-
ing r; — 0). For Z = 1 there is one m = 0 bound state that
is doubly occupied. Since the total screening density
integrates to unity to satisfy the FSR, the continuum
screening density must itself contribute a total charge of
+1 in order to compensate for the overscreening provided
by the bound states. In other words, the Z = 1 impurity
with two bound electrons can be viewed as an H™ ion
which acts as a Z = —1 impurity. This was confirmed by
comparing the Z =1 and Z = —1 continuum screening
densities. For r; = 10, the two are virtually the same.

In Fig. 2, we show the Z = 1 bound state energy as a
function of r,. The behavior seen is surprising in view of
the corresponding behavior in 3D. There, the bound state
energy increases with decreasing r, since the impurity
potential is screened more effectively with increasing
density and, as a result, the bound state eventually ceases
to exist [15]. Beyond this point, the accuracy of pertur-
bation theory improves with increasing density. The con-
trary behavior exhibited in Fig. 2 calls into question the
applicability of perturbation theory in the 2D case.
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FIG. 2. Bound state eigenvalue vs r;: nonlinear DFT with
(solid) and without (dashed) exchange correlation.

To address this question, we now prove a theorem
regarding electronic screening in the high-density limit.
We consider the introduction of an external potential
AV(r) into a uniform noninteracting Fermi gas for arbi-
trary dimension D. The parameter A is a coupling con-
stant whose physical value is unity. The problem is to
determine the induced density An(r) due to the introduc-
tion of AV(r); the effect of interactions will be dealt with
afterwards. By making use of Dyson’s equation, G 15, =
G, + 6AG,VG,,5), for the single particle Green func-
tion G,(r, 1/, z), one can show that the screening density
satisfies

dAn(r; A) _ 1 [

Ep
32 — dr’V(r’)f dE

— 00

X Im[G,(r,x, E + i€)G,(r,r, E + i€)].
)

The crucial next step in the argument is to use the
analytic properties of the Green functions to change the
energy integral from (fgﬁ;o) to (— [j,}"r) In the Ep — o0
limit, it is then permissible to replace G, by the free-
particle Green function G, since the energy E can now be
assumed to be much larger than the strength of the
(bounded) potential |V(r)|. Once this is done, the energy
integration can be changed back to its original range,
and, after integrating with respect to the coupling con-
stant, we obtain

1 Ep
M@:——/wwwgm dE
ar =0 | o

X Im[Gy(r, v, E + i€)Gy(x',r, E + ie)]. (6)

This asymptotic result is valid for any D and applies even
when the potential V(r) supports bound states. It can also
be seen to apply to a singular Coulomb potential in a
limiting sense. If the impurity is moved slightly out of the
plane, the potential is bounded and the theorem applies.
The screening density in this case will differ from that of
the singular potential only within a small distance of the
impurity.
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An alternative expression for (6) is
: 1 iqr
An(r) = - ElFlgle—D%Xo(q)V(q)e “ror (D)

which is the result of linear response theory. Here, x,(q)
is the noninteracting static density response function
of the system. In the high-density limit, ¢ < kg for all
wave vectors for which V(q) is finite, and we have
An(r) = — x,(0)V(r). In 2D, x,(0) = 7~ ! and

AMﬂz—%V@. )

Thus, we arrive at the interesting conclusion that in 2D
the screening density takes on a density-independent form
in the high-density limit, and is simply proportional to
the perturbing potential.

This result can easily be checked numerically. In Fig. 3,
we show An(r) for a 2D gas with r, = 0.5 for a model
potential V(r) = —V,,sin?>(27r/ry)0(ry — r) which is an
axially symmetric, double-well potential. With ry =
5 a.u. and V, = 0.125 H, the potential has a single m =
0 bound state, while for V; = 0.25 H there are twom = 0
bound states. In both cases we see that the total screening
density is well approximated by the asymptotic result
in Eq. (8).

To include the effect of interactions, we identify Awv g
in Eq. (2) with V(r) and make use of Eq. (8). In the high-
density limit, we then find Av(g) = —27Z/(q + 2),
which in real space gives the Thomas-Fermi potential
[13]. This potential is purely attractive and has a bound
state eigenvalue of Ey = —0.2862 H which is the r; — 0
limit of the curves in Fig. 2. This explains why a bound
state exists in the high-density limit and why, in spite of
this, the result is not in conflict with the applicability of
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FIG. 3. Screening charge density for a model potential: bound
(dashed) and continuum (chain) state contributions, total
(solid). (a) Vo = 0.125 H, (b) V, = 0.25 H; r, = 0.5.
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FIG. 4. Normalized stopping power as a function of the
projectile charge Z, for r; = 2: nonlinear screening with (solid)
and without (dashed) exchange correlation. The straight chain
curve gives the quadratic response result.

linear response theory. It should be emphasized that the
same argument in 3D leads to the conclusion that no
bound state can exist in this case.

As a final practical application, we present results of the
calculation of the energy loss per unit length (or stopping
power, S) for a projectile of charge Z moving with veloc-
ity v in the plane of the 2DEG. Within the so-called
kinetic theory framework, the stopping power is given
by the expression [16]

S = novvro,(Ep), 9)

where o,.(Ep) is the momentum-transfer cross section
defined in terms of the scattering phase shifts by [13]

4 o0
oulEr) = - > si’[0,(Er) = nwi1(ER)] - (10)
m=0

To leading order in the velocity, it is sufficient to deter-
mine the scattering phase shifts using the static non-
linearly screened potentials calculated in the present
paper.

In Fig. 4, we show the stopping power as a function of
the projectile charge Z. For small Z, S has the expansion
S =8,72%+ S,Z° + ..., where the first two terms are the
linear and quadratic response results, respectively. To
emphasize the deviations from linear response, we
present the results in the form S/(vZ?). In this represen-
tation, the stopping power including the quadratic re-
sponse correction appears as a straight line with slope
S,/v. This correction was previously calculated within
the quadratic random phase approximation [17] and is
shown in Fig. 4 as the straight line. We can see that
corrections beyond quadratic response theory are large,
especially for positive charges. Furthermore, the inclu-
sion of xc is seen to enhance the stopping power consid-
erably in the range —1 = Z = 1, even to a greater extent
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than found in 3D [18]. Finally, comparison with earlier
calculations [19] demonstrates that important differences
arise when the self-consistently determined nonlinear
screening potentials are used to evaluate the momentum
scattering cross sections.

In summary, we have performed self-consistent calcu-
lations of the nonlinear screening of a point charge in a
2DEG using density functional theory. We have also
proven a screening theorem which clarifies the behavior
of the screening in the high-density limit. These results
find application in a variety of problems, such as charged
impurity scattering and the stopping power of charged
projectiles.
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