13 research outputs found
Effect of the G375C and G346E Achondroplasia Mutations on FGFR3 Activation
Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism
Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT
International audienceBackground: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200 ± 40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150 ± 80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicit
Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease
Autoimmune diseases often result from inappropriate or unregulated activation of autoreactive T cells. Traditional approaches to treatment of autoimmune diseases through immunosuppression have focused on direct inhibition of T cells. In the present study, we examined the targeted inhibition of antigen-presenting cells as a means to downregulate immune responses and treat autoimmune disease. Dendritic cells (DCs) are the central antigen-presenting cells for the initiation of T cell responses, including autoreactive ones. A large portion of DCs are derived from hematopoietic progenitors that express FLT3 receptor (CD135), and stimulation of the receptor via FLT3 ligand either in vivo or in vitro is known to drive expansion and differentiation of these progenitors toward a DC phenotype. We hypothesized that inhibition of FLT3 signaling would thus produce an inhibition of DC-induced stimulation of T cells, thereby inhibiting autoimmune responses. To this end, we used small-molecule tyrosine kinase inhibitors targeted against FLT3 and examined the effects on DCs and their role in the promulgation of autoimmune disease. Results of our studies show that inhibition of FLT3 signaling induces apoptosis in both mouse and human DCs, and thus is a potential target for immune suppression. Furthermore, targeted inhibition of FLT3 significantly improved the course of established disease in a model for multiple sclerosis, experimental autoimmune encephalomyelitis, suggesting a potential avenue for treating autoimmune disease
Heterozygous Kit Mutants with Little or No Apparent Anemia Exhibit Large Defects in Overall Hematopoietic Stem Cell Function
OBJECTIVE: The evolutionarily conserved Kit receptor is vital for function of hematopoietic stem cells (HSC). Kit(W-41) (W-41) and Kit(W-42) (W-42) are single residue changes in the KIT intracellular phosphotransferase domain, while Kit(W-v) (W-v) is a single residue change in the ATP binding domain. This study tests how each mutation affects HSC function. METHODS: Cells in mutant and C57BL/6J +/+ blood and marrow were compared. Overall HSC function was measured by competitive repopulation. Functions of specific progenitor populations were tested with stage-specific competitive repopulation and standard colony forming unit assays. RESULTS: Bone marrow cells from these Kit mutants are severely defective at reconstituting peripheral blood lineages and bone marrow of irradiated recipients, when compared to +/+ control marrow. These defects increased with time. Marrow from W-41/+ and W-v/+ functions similarly but better than marrow from W-41/W-41 and W-42/+, to repopulate the erythroid and lymphoid lineages. Long term (LT) - and short term (ST)-HSC from W-v/+, W-41/W-41 and W-42/+ are more defective at reconstituting bone marrow than LT- and ST-HSC from W-41/+ and +/+. Common myeloid progenitor (CMP) cells from W-42/+ and W-41/W-41 are more defective at producing spleen colonies than CMP from W-v/+ and W-41/+. CONCLUSION: Heterozygous Kit mutants with little or no apparent anemia exhibit surprisingly large defects in overall HSC function. Multiplying the fractional defects in LT-HSC, ST-HSC and CMP can account for overall effects of W-v/+, but does not completely account for the defects observed with W-41/+, W-42/+ and W-41/W-41
VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines
Here, we demonstrate a novel, direct-acting, and synergistic role for 3 hematopoietic stem cell cytokines: stem cell factor, interleukin-3, and stromal derived factor-1α, in controlling human endothelial cell (EC) tube morphogenesis, sprouting, and pericyte-induced tube maturation under defined serum-free conditions in 3-dimensional matrices. Angiogenic cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) alone or VEGF/FGF combinations do not support these responses. In contrast, VEGF and FGF prime EC responses to hematopoietic cytokines via up-regulation of c-Kit, IL-3Rα, and C-X-C chemokine receptor type 4 from either human ECs or embryonic quail vessel explants. In support of these findings, EC Runx1 is demonstrated to be critical in coordinating vascular morphogenic responses by controlling hematopoietic cytokine receptor expression. Combined blockade of hematopoietic cytokines or their receptors in vivo leads to blockade of developmental vascularization in quail embryos manifested by vascular hemorrhage and disrupted vascular remodeling events in multiple tissue beds. This work demonstrates a unique role for hematopoietic stem cell cytokines in vascular tube morphogenesis and sprouting and further demonstrates a novel upstream priming role for VEGF and FGF to facilitate the action of promorphogenic hematopoietic cytokines