352 research outputs found

    Eocene Circulation Of The Southern Ocean: Was Antarctica Kept Warm By Subtropical Waters?

    Get PDF
    Near the Eocene\u27s close (∼34 million years ago), the climate system underwent one of the largest shifts in Earth\u27s history: Antarctic terrestrial ice sheets suddenly grew and ocean productivity patterns changed. Previous studies conjectured that poleward penetration of warm, subtropical currents, the East Australian Current (EAC) in particular, caused Eocene Antarctic warmth. Late Eocene opening of an ocean gateway between Australia and Antarctica was conjectured to have disrupted the EAC, cooled Antarctica, and allowed ice sheets to develop. Here we reconstruct Eocene paleoceanographic circulation in the Tasmanian region, using (1) biogeographical distributions of phytoplankton, including data from recently drilled Ocean Drilling Program Leg 189 sites and (2) fully coupled climate model simulations. We find that the EAC did not penetrate to high latitudes and ocean heat transport in the region was not greater than modern. Our results do not support changes in “thermal isolation” as the primary driver of the Eocene-Oligocene climatic transition

    All That Glitters Is Not Gold: Towards Process Discovery Techniques with Guarantees

    Get PDF
    The aim of a process discovery algorithm is to construct from event data a process model that describes the underlying, real-world process well. Intuitively, the better the quality of the event data, the better the quality of the model that is discovered. However, existing process discovery algorithms do not guarantee this relationship. We demonstrate this by using a range of quality measures for both event data and discovered process models. This paper is a call to the community of IS engineers to complement their process discovery algorithms with properties that relate qualities of their inputs to those of their outputs. To this end, we distinguish four incremental stages for the development of such algorithms, along with concrete guidelines for the formulation of relevant properties and experimental validation. We will also use these stages to reflect on the state of the art, which shows the need to move forward in our thinking about algorithmic process discovery.Comment: 13 pages, 4 figures. Submitted to the International Conference on Advanced Information Systems Engineering, 202

    Timing and Nature of the Deepening of the Tasmanian Gateway

    Get PDF
    Tectonic changes that produced a deep Tasmanian Gateway between Australia and Antarctica are widely invoked as the major mechanism for Antarctic cryosphere growth and Antarctic Circumpolar Current (ACC) development during the Eocene/Oligocene (E/O) transition (∼34–33 Ma). Ocean Drilling Program (ODP) Leg 189 recovered near-continuous marine sedimentary records across the E/O transition interval at four sites around Tasmania. These records are largely barren of calcareous microfossils but contain a rich record of siliceous- and organic-walled marine microfossils. In this study we integrate micropaleontological, sedimentological, geochemical, and paleomagnetic data from Site 1172 (East Tasman Plateau) to identify four distinct phases (A–D) in the E/O Tasmanian Gateway deepening that are correlative among ODP Leg 189 sites. Phase A, prior to ∼35.5 Ma: minor initial deepening characterized by a shallow marine prodeltaic setting with initial condensation episodes. Phase B, ∼35.5–33.5 Ma: increased deepening marked by the onset of major glauconitic deposition and inception of energetic bottom-water currents. Phase C, ∼33.5–30.2 Ma: further deepening to bathyal depths, with episodic erosion by increasingly energetic bottom-water currents. Phase D, \u3c30.2 Ma: establishment of stable, open-ocean, warm-temperate, oligotrophic settings characterized by siliceous-carbonate ooze deposition. Our combined evidence indicates that this early Oligocene Tasmanian Gateway deepening initially produced an eastward flow of relatively warm surface waters from the Australo-Antarctic Gulf into the southwestern Pacific Ocean. This “proto-Leeuwin” current fundamentally differs from previous regional reconstructions of eastward flowing cool water (e.g., a “proto-ACC”) during the early Oligocene and thereby represents an important new constraint for reconstructing regional- to global-scale dynamics for this major global change event

    Evaluation of Methods to Enhance Reef Restoration

    Get PDF
    The coral reefs of southeast Florida are offshore a highly urbanized area with a population exceeding 5 million people and three major shipping ports with over 6000 ships calling on an annual basis. Reef injury events are common and have been caused by ship groundings and marine construction activities such as channel dredging and cable placement. Restoration activities generally only include the reattachment of dislodged stony corals, removal of rubble, and boulder stabilization. The Florida Department of Environmental Protection has recognized these limited activities and is collaborating with Nova Southeastern University’s Oceanographic Center to study ways to accelerate coral reef succession in damaged reef areas. The goal of this study is two-fold: 1) to examine the potential for natural recovery by examining coral recruitment to both damaged and control sites, and 2) to test several reef restoration enhancement methods. Baseline surveys indicate that juvenile coral density is higher at damaged reef sites than control sites, but rates of coral recruitment, growth, and mortality are being monitored. Comparison of materials commonly used in reef restoration indicates that concrete and limestone initially attract more coral recruits than other materials tested. Finally, the efficacy of transplanting gorgonians and sponges through fragmentation and of corals through relocation of juveniles are being assessed. Information gained from these studies will provide resource agencies with improved methods to promote reef restoration

    A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues

    Get PDF
    The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene (�44.4 Ma) from lower Miocene sediments (�18.2 Ma). To elucidate the nature of this unconformity, we performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86) and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from �5 m below to �7 m above the hiatus. Four main paleoenvironmental phases (A–D) are recognized in the sediments encompassing the unconformity, two below (A–B) and two above (C–D): (A) Below the hiatus, proxies show relatively warm temperatures, with Sea Surface Temperatures (TEX86-derived SSTs) of about 8�C and high fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86-derived SSTs of �5�C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling site, located close to or at sea level. (C) The interval directly above the unconformity contains sparse reworked Cretaceous to Oligocene dinoflagellate cysts. Sediments were deposited in a relatively shallow, restricted marine environment. Proxies show the simultaneous influence of both fresh and marine waters, with alternating oxic and anoxic conditions. Pollen indicates a relatively cold climate. Intriguingly, TEX86-derived SSTs are unexpectedly high, �15–19�C. Such warm surface waters may be partially explained by the ingression of warmer North Atlantic waters after the opening of the Fram Strait during the early Miocene. (D) Sediments of the uppermost interval indicate a phase of extreme oxic conditions, and a well-ventilated environment, which occurred after the complete opening of the Fram Strait. Importantly, and in contrast with classical postrifting thermal subsidence models for passive margins, our data suggest that sediment erosion and/or nondeposition that generated the hiatus was likely due to a progressive shoaling of the Lomonosov Ridge. A shallow water setting both before and after the hiatus suggests that the Lomonosov Ridge remained at or near sea level for the duration of the gap in the sedimentary record. Interacting sea level changes and/or tectonic activity (possibly uplift) must be invoked as possible causes for such a long hiatus

    Environmental Forcings of Paleogene Southern Ocean Dinoflagellate Biogeography

    Get PDF
    Despite warm polar climates and low meridional temperature gradients, a number of different high-latitude plankton assemblages were, to varying extents, dominated by endemic species during most of the Paleogene. To better understand the evolution of Paleogene plankton endemism in the high southern latitudes, we investigate the spatiotemporal distribution of the fossil remains of dinoflagellates, i.e., organic-walled cysts (dinocysts), and their response to changes in regional sea surface temperature (SST). We show that Paleocene and early Eocene (∼65–50 Ma) Southern Ocean dinocyst assemblages were largely cosmopolitan in nature but that a distinct switch from cosmopolitan-dominated to endemic-dominated assemblages (the so-called “transantarctic flora”) occurred around the early-middle Eocene boundary (∼50 Ma). The spatial distribution and relative abundance patterns of this transantarctic flora correspond well with surface water circulation patterns as reconstructed through general circulation model experiments throughout the Eocene. We quantitatively compare dinocyst assemblages with previously published TEX86–based SST reconstructions through the early and middle Eocene from a key locality in the southwest Pacific Ocean, ODP Leg 189 Site 1172 on the East Tasman Plateau. We conclude that the middle Eocene onset of the proliferation of the transantarctic flora is not linearly correlated with regional SST records and that only after the transantarctic flora became fully established later in the middle Eocene, possibly triggered by large-scale changes in surface-ocean nutrient availability, were abundances of endemic dinocysts modulated by regional SST variations
    corecore