13 research outputs found

    Probabilistic Sparse Kernel Logistic Multi-classifier

    No full text

    Estrogens, selective estrogen receptor modulators, and a selective estrogen receptor down-regulator inhibit endothelial production of tissue factor pathway inhibitor 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormone therapy, oral contraceptives, and tamoxifen increase the risk of thrombotic disease. These compounds also reduce plasma content of tissue factor pathway inhibitor-1 (TFPI), which is the physiological inhibitor of the tissue factor pathway of coagulation. The current aim was to study if estrogens and estrogen receptor (ER) modulators may inhibit TFPI production in cultured endothelial cells and, if so, identify possible mechanisms involved.</p> <p>Methods</p> <p>Human endothelial cell cultures were treated with 17β-estradiol (E2), 17α-ethinylestradiol (EE2), tamoxifen, raloxifene, or fulvestrant. Protein levels of TFPI in cell media and cell lysates were measured by an enzyme-linked immunosorbent assay, and TFPI mRNA levels were assessed by quantitative PCR. Expression of ERα was analysed by immunostaining.</p> <p>Results</p> <p>All compounds (each in a concentration of 10 nM) reduced TFPI in cell medium, by 34% (E2), 21% (EE2), 16% (tamoxifen), and 28% (raloxifene), respectively, with identical inhibitory effects on cellular TFPI levels. Expression of TFPI mRNA was principally unchanged. Treatment with fulvestrant, which was also associated with down-regulation of secreted TFPI (9% with 10 nM and 26% with 1000 nM), abolished the TFPI-inhibiting effect of raloxifene, but not of the other compounds. Notably, the combination of 1000 nM fulvestrant and 10 nM raloxifene increased TFPI secretion, and, conversely, 10 nM of either tamoxifen or raloxifene seemed to partly (tamoxifen) or fully (raloxifene) counteract the inhibitory effect of 1000 nM fulvestrant. The cells did not express the regular nuclear 66 kDa ERα, but instead a 45 kDa ERα, which was not regulated by estrogens or ER modulators.</p> <p>Conclusion</p> <p>E2, EE2, tamoxifen, raloxifene, and fulvestrant inhibited endothelial production of TFPI by a mechanism apparently independent of TFPI transcription.</p

    Anomalous conditions in the south-eastern Bering Sea, 1997: nutrients, phytoplankton and zooplankton

    No full text
    Anomalies in the regional weather over the southeastern Bering Sea during spring and summer of 1997 resulted in significant differences in nutrient availability, phytoplankton species composition, and zooplankton abundance over the continental shelf as compared with measurements in the 1980s. Calm winds and the reduction of cloud cover in spring and summer produced a very shallow mixed layer in which nitrate and silicate were depleted after an April diatom bloom. High submarine light levels allowed subsequent phytoplankton growth below the pycnocline and eventual depletion of nitrate from the water column to depths of 70 m or more. Thus, total new production during 1997 may have exceeded that of previous years when nitrate was not depleted below the pycnocline. A bloom of the coccolithophorid, Emiliania huxleyi, was observed in early July in the warm, nutrient-depleted waters over the middle and inner shelf. Emiliania huxleyi concentrations reached 4.5 × 106 cells L-1 by September, and the bloom persisted through the autumn. There was evidence for increased abundance of some species of copepods in 1997 as compared with data from the middle domain in June 1981. The abundance of adult and juvenile euphausiids in 1997 was statistically similar to values measured in 1980 and 1981. However, near-surface swarms were rarely observed on the inner shelf in August-September 1997. Lack of euphausiid availability in the upper water column may partially explain the August-September mass mortality of planktivorous short-tailed shearwaters (Puffinus tenuirostris) observed on the inner shelf
    corecore