9 research outputs found

    Árboles del Santuario Histórico de Machu Picchu: Monitoreo de diversidad y carbono a largo plazo

    Get PDF
    Understanding how the richness, diversity, and carbon monitoring vary and are distributed through altitudinal gradients in Andean montane forests is essential to understand how these forests are adapting to global warming effects. Botanical explorations and general collections were carried out within the limits of the Historic Sanctuary of Machu Picchu in an altitude gradient of 1600 to 4200 m.a.s.l. Two permanent plots of 1.0 ha were established in the sectors of Intipunku (SHM – 01) at an altitude of 2,653 m.a.s.l and Kantupata (SHM-02) at an altitude of 3,200 m.a.s.l., with the standardized methodology of RAINFOR in 2013 and remedied in 2016. We updated the number of tree species for the Historic Sanctuary of Machu Picchu, 364 species are reported so far, this catalog includes all wild and cultivated species but also tree ferns and palm trees. In recent years, four new tree species have been described whose TYPE collections come from SHM forests: Ocotea alveatavan der Werff, Ocotea mollivillosavan der Werff (Lauraceae), Bunchosia cuscanaW.R. Anderson (Malpighiaceae), Ficus machupicchuensisC.C. Berg (Moraceae). In the two permanent plots, a total of 69 species were recorded in 1286 individuals. Individually in the SHM – 01 plot, 26 families, 36 genera and 45 species were recorded in 682 individuals; and in the SHM – 02 plot: 22 families, 28 genera and 31 species in 604 individuals. Stored aerial biomass was higher in the Intipunku sector (146 Mg ha-1) compared to Kantupata sector (101 Mg ha-1). Our research shows that the Andean forests of Machu Picchu provide important ecosystem services, and there is still much to do in terms of scientic research. The continued discovery of new tree species in the locality demonstrates the need for conservation to protect forests that support some of the highest levels of endemism in the world

    Landscape Diversity and Crop Vigor Influence Biological Control of the Western Grape Leafhopper (E. elegantula Osborn) in Vineyards.

    Get PDF
    This study evaluated how the proportional area of natural habitat surrounding a vineyard (i.e. landscape diversity) worked in conjunction with crop vigor, cultivar and rootstock selection to influence biological control of the western grape leafhopper (Erythroneura elegantula Osborn). The key natural enemies of E. elegantula are Anagrus erythroneurae S. Trjapitzin & Chiappini and A. daanei Triapitsyn, both of which are likely impacted by changes in landscape diversity due to their reliance on non-crop habitat to successfully overwinter. Additionally, E. elegantula is sensitive to changes in host plant quality which may influence densities on specific cultivars, rootstocks and/or vines with increased vigor. From 2010-2013, data were collected on natural enemy and leafhopper densities, pest parasitism rates and vine vigor from multiple vineyards that represented a continuum of landscape diversity. Early in the season, vineyards in more diverse landscapes had higher Anagrus spp. densities and lower E. elegantula densities, which led to increased parasitism of E. elegantula. Although late season densities of E. elegantula tended to be lower in vineyards with higher early season parasitism rates and lower total petiole nitrogen content, they were also affected by rootstock and cultivar. While diverse landscapes can support higher natural enemy populations, which can lead to increased biological control, leafhopper densities also appear to be mediated by cultivar, rootstock and vine vigor

    Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors

    Get PDF
    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits

    Erratum to: Coordination Chemistry of Nitrosyls and Its Biochemical Implications

    No full text
    corecore