53 research outputs found

    Clonidina en el tratamiento de la deshabituación tabáquica. Comparación con chicles de nicotina

    Get PDF
    The objective of our work was to carry out a prospective study on the effectiveness of clonidine and nicotine gum in the treatment of tobacco withdrawal. Sixty smokers were randomly distributed in two groups and were included in a tobacco withdrawal program. One group received oral clonidine treatment while the other group was given nicotine gum. Adjuvant therapy such as group therapy or psychotherapy was not performed. At the end of one year there were no significant differences between the two groups with regards to the number of subjects who have continued to stop smoking. There were also no significant differences between the two groups with regards to the symptoms of tobacco abstinence. When we studied the relation between treatment fulfillment and tobacco withdrawal we observed that the clonidine treated group had a significantly greater number of success compared to the nicotine group (p < 0.01)

    Análisis comparativo de pacientes con lesiones estenóticas y ectásicas coronarias

    Get PDF
    A total number of 177 patients with coronary lesions were studied. Sixty nine of them presented either a combination of stenotic and ectatic lesions (n = 18) or isolated ectatic lesions (n = 51) and 108 presented only stenotic lesions. Analyzing several clinical and epidemiological parameters we observed a significant difference with respect to the higher prevalence of hypertension among the group affected by ectatic lesions. We verified as well a higher prevalence of myocardial infarction in the group of ectasia associated to the stenotic lesions. Finally, a higher global mortality was observed in the group of ectasia associated to stenotic lesions after medical or surgical treatment

    On the nature of the fourth generation neutrino and its implications

    Get PDF
    We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth generation neutrinos.Comment: To be published. Few typos corrected, references update

    Neutrino masses from new generations

    Get PDF
    We reconsider the possibility that Majorana masses for the three known neutrinos are generated radiatively by the presence of a fourth generation and one right-handed neutrino with Yukawa couplings and a Majorana mass term. We find that the observed light neutrino mass hierarchy is not compatible with low energy universality bounds in this minimal scenario, but all present data can be accommodated with five generations and two right-handed neutrinos. Within this framework, we explore the parameter space regions which are currently allowed and could lead to observable effects in neutrinoless double beta decay, μe\mu - e conversion in nuclei and μeγ\mu \rightarrow e \gamma experiments. We also discuss the detection prospects at LHC.Comment: 28 pages, 4 figures. Version to be published. Some typos corrected. Improved figures 3 and

    Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

    Get PDF
    Neutrinoless double beta (0νββ0\nu\beta\beta) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, eLeL,eLeRe_Le_L, e_Le_R and eReRe_Re_R, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masses are always induced by these extra operators but can be delayed to one or two loops, depending on the number of RH leptons entering in the operator. Then, the comparison of the 0νββ0\nu\beta\beta decay rate and neutrino masses should indicate the effective scenario at work, which confronted with the LHC searches should also eventually decide on the specific model elected by nature. We also list the SM additions generating these operators upon integration of the heavy modes, and discuss simple realistic examples of renormalizable theories for each case.Comment: Accepted for publication. Few misprints corrected and new references adde

    Robust association between vascular habitats and patient prognosis in glioblastoma: an international retrospective multicenter study

    Full text link
    This is the peer reviewed version of the following article: del Mar Álvarez-Torres, M., Juan-Albarracín, J., Fuster-Garcia, E., Bellvís-Bataller, F., Lorente, D., Reynés, G., Font de Mora, J., Aparici-Robles, F., Botella, C., Muñoz-Langa, J., Faubel, R., Asensio-Cuesta, S., García-Ferrando, G.A., Chelebian, E., Auger, C., Pineda, J., Rovira, A., Oleaga, L., Mollà-Olmos, E., Revert, A.J., Tshibanda, L., Crisi, G., Emblem, K.E., Martin, D., Due-Tønnessen, P., Meling, T.R., Filice, S., Sáez, C. and García-Gómez, J.M. (2020), Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study. J Magn Reson Imaging, 51: 1478-1486, which has been published in final form at https://doi.org/10.1002/jmri.26958. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Background Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE). Purpose To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols. Study Type Multicenter retrospective study. Population In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 clinical study. Field Strength/Sequence 1.5T (for 54 patients) or 3.0T (for 130 patients). Pregadolinium and postgadolinium-based contrast agent-enhanced T-1-weighted MRI, T-2- and FLAIR T-2-weighted, and dynamic susceptibility contrast (DSC) T-2* perfusion. Assessment We analyzed preoperative MRIs to establish the association between the maximum relative cerebral blood volume (rCBV(max)) at each habitat with OS. Moreover, the stratification capabilities of the markers to divide patients into "vascular" groups were tested. The variability in the markers between individual centers was also assessed. Statistical Tests Uniparametric Cox regression; Kaplan-Meier test; Mann-Whitney test. Results The rCBV(max) derived from the HAT, LAT, and IPE habitats were significantly associated with patient OS (P < 0.05; hazard ratio [HR]: 1.05, 1.11, 1.28, respectively). Moreover, these markers can stratify patients into "moderate-" and "high-vascular" groups (P < 0.05). The Mann-Whitney test did not find significant differences among most of the centers in markers (HAT: P = 0.02-0.685; LAT: P = 0.010-0.769; IPE: P = 0.093-0.939; VPE: P = 0.016-1.000). Data Conclusion The rCBV(max) calculated in HAT, LAT, and IPE habitats have been validated as clinically relevant prognostic biomarkers for glioblastoma patients in the pretreatment stage. This study demonstrates the robustness of the hemodynamic tissue signature (HTS) habitats to assess the GBM vascular heterogeneity and their association with patient prognosis independently of intercenter variability. Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019.This work was partially supported by: MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R) (to J.M.G.G.); H2020-SC1-2016-CNECT Project (No. 727560) (to J.M.G.G.) and H2020-SC1-BHC-2018-2020 (No. 825750) (to J.M.G.G.); M.A.T was supported by DPI2016-80054-R (Programa Estatal de Promocion del Talento y su Empleabilidad en I + D + i). The data acquisition and curation of the Oslo University Hospital was supported by: the European Research Council (ERC) under the European Union's Horizon 2020 (Grant Agreement No. 758657), the South-Eastern Norway Regional Health Authority Grants 2017073 and 2013069, and the Research Council of Norway Grants 261984 (to K.E.E.). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. E.F.G. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 844646. Figure 1 was designed by the Science Artist Elena Poritskaya.Álvarez-Torres, MDM.; Juan-Albarracín, J.; Fuster García, E.; Bellvís-Bataller, F.; Lorente, D.; Reynés, G.; Font De Mora, J.... (2020). Robust association between vascular habitats and patient prognosis in glioblastoma: an international retrospective multicenter study. Journal of Magnetic Resonance Imaging. 51(5):1478-1486. https://doi.org/10.1002/jmri.2695814781486515Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., … Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. doi:10.1007/s00401-016-1545-1Gately, L., McLachlan, S., Dowling, A., & Philip, J. (2017). Life beyond a diagnosis of glioblastoma: a systematic review of the literature. Journal of Cancer Survivorship, 11(4), 447-452. doi:10.1007/s11764-017-0602-7Bae, S., Choi, Y. S., Ahn, S. S., Chang, J. H., Kang, S.-G., Kim, E. H., … Lee, S.-K. (2018). Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology, 289(3), 797-806. doi:10.1148/radiol.2018180200Akbari, H., Macyszyn, L., Da, X., Wolf, R. L., Bilello, M., Verma, R., … Davatzikos, C. (2014). Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity. Radiology, 273(2), 502-510. doi:10.1148/radiol.14132458Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Medicine, 17(11), 1359-1370. doi:10.1038/nm.2537De Palma, M., Biziato, D., & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457-474. doi:10.1038/nrc.2017.51Jain, R., Poisson, L. M., Gutman, D., Scarpace, L., Hwang, S. N., Holder, C. A., … Flanders, A. (2014). Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the Nonenhancing Component of the Tumor. Radiology, 272(2), 484-493. doi:10.1148/radiol.14131691Jensen, R. L., Mumert, M. L., Gillespie, D. L., Kinney, A. Y., Schabel, M. C., & Salzman, K. L. (2013). Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro-Oncology, 16(2), 280-291. doi:10.1093/neuonc/not148Jena, A., Taneja, S., Gambhir, A., Mishra, A. K., D’souza, M. M., Verma, S. M., … Sogani, S. K. (2016). Glioma Recurrence Versus Radiation Necrosis. Clinical Nuclear Medicine, 41(5), e228-e236. doi:10.1097/rlu.0000000000001152Price, S. J., Young, A. M. H., Scotton, W. J., Ching, J., Mohsen, L. A., Boonzaier, N. R., … Larkin, T. J. (2015). Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. Journal of Magnetic Resonance Imaging, 43(2), 487-494. doi:10.1002/jmri.24996Chang, Y.-C. C., Ackerstaff, E., Tschudi, Y., Jimenez, B., Foltz, W., Fisher, C., … Stoyanova, R. (2017). Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI. Scientific Reports, 7(1). doi:10.1038/s41598-017-09932-5Cui, Y., Tha, K. K., Terasaka, S., Yamaguchi, S., Wang, J., Kudo, K., … Li, R. (2016). Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology, 278(2), 546-553. doi:10.1148/radiol.2015150358Juan-Albarracín, J., Fuster-Garcia, E., Pérez-Girbés, A., Aparici-Robles, F., Alberich-Bayarri, Á., Revert-Ventura, A., … García-Gómez, J. M. (2018). Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival. Radiology, 287(3), 944-954. doi:10.1148/radiol.2017170845Fuster-Garcia, E., Juan-Albarracín, J., García-Ferrando, G. A., Martí-Bonmatí, L., Aparici-Robles, F., & García-Gómez, J. M. (2018). Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures. NMR in Biomedicine, 31(12), e4006. doi:10.1002/nbm.4006Abramson, R. G., Burton, K. R., Yu, J.-P. J., Scalzetti, E. M., Yankeelov, T. E., Rosenkrantz, A. B., … Subramaniam, R. M. (2015). Methods and Challenges in Quantitative Imaging Biomarker Development. Academic Radiology, 22(1), 25-32. doi:10.1016/j.acra.2014.09.001Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., … Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352(10), 987-996. doi:10.1056/nejmoa043330Wetzel, S. G., Cha, S., Johnson, G., Lee, P., Law, M., Kasow, D. L., … Xue, X. (2002). Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study. Radiology, 224(3), 797-803. doi:10.1148/radiol.2243011014Schnack, H. G., van Haren, N. E. M., Hulshoff Pol, H. E., Picchioni, M., Weisbrod, M., Sauer, H., … Kahn, R. S. (2004). Reliability of brain volumes from multicenter MRI acquisition: A calibration study. Human Brain Mapping, 22(4), 312-320. doi:10.1002/hbm.20040De Guio, F., Jouvent, E., Biessels, G. J., Black, S. E., Brayne, C., Chen, C., … Chabriat, H. (2016). Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow & Metabolism, 36(8), 1319-1337. doi:10.1177/0271678x16647396Hirai, T., Murakami, R., Nakamura, H., Kitajima, M., Fukuoka, H., Sasao, A., … Yamashita, Y. (2008). Prognostic Value of Perfusion MR Imaging of High-Grade Astrocytomas: Long-Term Follow-Up Study. American Journal of Neuroradiology, 29(8), 1505-1510. doi:10.3174/ajnr.a1121Sawlani, R. N., Raizer, J., Horowitz, S. W., Shin, W., Grimm, S. A., Chandler, J. P., … Carroll, T. J. (2010). Glioblastoma: A Method for Predicting Response to Antiangiogenic Chemotherapy by Using MR Perfusion Imaging—Pilot Study. Radiology, 255(2), 622-628. doi:10.1148/radiol.10091341Hambardzumyan, D., & Bergers, G. (2015). Glioblastoma: Defining Tumor Niches. Trends in Cancer, 1(4), 252-265. doi:10.1016/j.trecan.2015.10.009Artzi, M., Bokstein, F., Blumenthal, D. T., Aizenstein, O., Liberman, G., Corn, B. W., & Ben Bashat, D. (2014). Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: A longitudinal MRI study. European Journal of Radiology, 83(7), 1250-1256. doi:10.1016/j.ejrad.2014.03.02

    Acute effects of caffeine and cigarette smoking on ventricular long-axis function in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few data exist regarding the direct effects of caffeine and smoking on cardiac function. We sought to explore the acute effects of caffeine assumption, cigarette smoking, or both on left ventricular (LV) and right ventricular (RV) function in a population of young normal subjects.</p> <p>Methods</p> <p>Forty-five healthy subjects aged 25 ± 2 years underwent echocardiography. Fifteen of them were non-smokers and habitual coffee consumers (group 1), 15 were smokers and not habitual coffee consumers (group 2), and 15 were smokers and habitual coffee consumers (group 3). Peak systolic (S<sub>a</sub>), early diastolic E<sub>a</sub>, and late diastolic (A<sub>a</sub>) velocity of mitral annulus were measured by pulsed Tissue Doppler, and left atrioventricular plane displacement was determined by M-mode. Tricuspid annular velocities and systolic excursion (TAPSE) were also determined. Measurements were performed at baseline and after oral assumption of caffeine 100 mg in group 1, one cigarette smoking in group 2, and both in group 3.</p> <p>Results</p> <p>No changes in ventricular function were observed in group 1 after caffeine administration. In group 2, cigarette smoking yielded an acute increase in mitral A<sub>a </sub>(+12.1%, p = 0.0026), tricuspid S<sub>a </sub>(+9.8%, p = 0.012) and TAPSE (+7.9%, p = 0.017), and a decrease in the mitral E<sub>a</sub>/A<sub>a </sub>ratio (-8.5%, p = 0.0084). Sequential caffeine assumption and cigarette smoking in group 3 was associated with an acute increase in mitral A<sub>a </sub>(+13.0%, p = 0.015) and tricuspid A<sub>a </sub>(+11.6%, p < 0.0001) and a reduction in mitral E<sub>a</sub>/A<sub>a </sub>ratio (-8.5%, p = 0.0084) tricuspid E<sub>a </sub>(-6.6%, p = 0.048) and tricuspid E<sub>a</sub>/A<sub>a </sub>ratio (-9.6%, p = 0.0003). In a two-way ANOVA model controlling for hemodynamic confounding factors, changes in the overall population remained significant for mitral A<sub>a </sub>and E<sub>a</sub>/A<sub>a </sub>ratio, and for tricuspid A<sub>a </sub>and E<sub>a</sub>/A<sub>a </sub>ratio.</p> <p>Conclusion</p> <p>In young healthy subjects, one cigarette smoking is associated to an acute impairment in LV diastolic function and a hyperdynamic RV systolic response. Caffeine assumption alone does not exert any acute effect on ventricular long-axis function, but potentiates the negative effect of cigarette smoking by abolishing RV supernormal response and leading to a simultaneous impairment in both LV and RV diastolic function.</p

    Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

    Full text link
    [EN] Purpose: To systematically review evidence regarding the association of multi-parametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. Materials and Methods: Scopus database was searched for original journal papers from January 1st, 2007 to February 20th , 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed and scored independently by two out of six authors. Based on those papers we analyzed associations between biomarkers, subcompartments within the tumor lesion, and clinical outcomes. From all the articles analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria. Results: It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and response to treatment in gliomas. Quantifications and radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse compartments, gross tumor volumes, and high-risk regions have been defined to characterize the heterogeneity. For the majority of pairwise cooccurrences, we found no evidence to assert that observed co-occurrences were significantly different from their expected co-occurrences (Binomial test with False Discovery Rate correction, alpha=0.05). The co-occurrence among terms in the studied papers was found to be driven by their individual prevalence and trends in the literature. Conclusion: Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have demonstrated their capability to predict clinical outcomes in different management moments of gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and may quantify the prognosis and response to treatment of gliomas.This work was supported by the Spanish Ministry for Investigation, Development and Innovation project with identification number DPI2016-80054-R.Oltra-Sastre, M.; Fuster García, E.; Juan -Albarracín, J.; Sáez Silvestre, C.; Perez-Girbes, A.; Sanz-Requena, R.; Revert-Ventura, A.... (2019). Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review. Current Medical Imaging Reviews. 15(10):933-947. https://doi.org/10.2174/1573405615666190109100503S9339471510Louis D.N.; Perry A.; Reifenberger G.; The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016,131(6),803-820Ostrom Q.T.; Gittleman H.; Fulop J.; CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015,17(Suppl. 4),iv1-iv62Yachida S.; Jones S.; Bozic I.; Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010,467(7319),1114-1117Gerlinger M.; Rowan A.J.; Horswell S.; Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012,366(10),883-892Sottoriva A.; Spiteri I.; Piccirillo S.G.M.; Intratumor heterogeneityin human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013,110(10),4009-4014Whiting P.F.; Rutjes A.W.; Westwood M.E.; QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011,155(8),529-536Stupp R.; Mason W.P.; van den Bent M.J.; Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005,352(10),987-996Ponte K.F.; Berro D.H.; Collet S.; In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 2017,58(10),1574-1579Pope W.B.; Kim H.J.; Huo J.; Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009,252(1),182-189Mörén L.; Bergenheim A.T.; Ghasimi S.; Brännström T.; Johansson M.; Antti H.; Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Metabolites 2015,5(3),502-520Prager A.J.; Martinez N.; Beal K.; Omuro A.; Zhang Z.; Young R.J.; Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015,36(5),877-885Kickingereder P.; Burth S.; Wick A.; Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016,280(3),880-889Yoo R-E.; Choi S.H.; Cho H.R.; Tumor blood flow from arterial spin labeling perfusion MRI: a key parameter in distinguishing high-grade gliomas from primary cerebral lymphomas, and in predicting genetic biomarkers in high-grade gliomas. J Magn Reson Imaging 2013,38(4),852-860Liberman G.; Louzoun Y.; Aizenstein O.; Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur J Radiol 2013,82(2),e87-e94Ramadan S.; Andronesi O.C.; Stanwell P.; Lin A.P.; Sorensen A.G.; Mountford C.E.; Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 2011,259(2),540-549Xintao H.; Wong K.K.; Young G.S.; Guo L.; Wong S.T.; Support vector machine multi-parametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011,33(2),296Ingrisch M.; Schneider M.J.; Nörenberg D.; Radiomic Analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017,52(6),360-366Ulyte A.; Katsaros V.K.; Liouta E.; Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016,58(12),1197-1208O’Neill A.F.; Qin L.; Wen P.Y.; de Groot J.F.; Van den Abbeele A.D.; Yap J.T.; Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neurooncol 2016,130(3),495-503Kickingereder P.; Bonekamp D.; Nowosielski M.; Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 2016,281(3),907-918Roberto S-R.; Antonio R-V.; Luis M-B.; Angel A-B.; Gracián G-M.; Quantitative mr perfusion parameters related to survival time in high-grade gliomas. European Radiology 2013,23(12),3456-3465Jain R.; Poisson L.; Narang J.; Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 2013,267(1),212-220Fathi K.A.; Mohseni M.; Rezaei S.; Bakhshandehpour G.; Saligheh R.H.; Multi-parametric (ADC/PWI/T2-W) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015,28(1),13-22Caulo M.; Panara V.; Tortora D.; Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014,272(2),494-503Alexiou G.A.; Zikou A.; Tsiouris S.; Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn Reson Imaging 2014,32(7),854-859Van Cauter S.; De Keyzer F.; Sima D.M.; Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncol 2014,16(7),1010-1021Seeger A.; Braun C.; Skardelly M.; Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013,20(12),1557-1565Chawalparit O.; Sangruchi T.; Witthiwej T.; Diagnostic performance of advanced mri in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 2013,96(10),1365-1373Li Y.; Lupo J.M.; Parvataneni R.; Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro-oncol 2013,15(5),607-617Shankar J.J.S.; Woulfe J.; Silva V.D.; Nguyen T.B.; Evaluation of perfusion CT in grading and prognostication of high-grade gliomas at diagnosis: a pilot study. AJR Am J Roentgenol 2013,200(5)Zinn P.O.; Mahajan B.; Sathyan P.; Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011,6(10)Matsusue E.; Fink J.R.; Rockhill J.K.; Ogawa T.; Maravilla K.R.; Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010,52(4),297-306Juan-Albarracín J.; Fuster-Garcia E.; Manjón J.V.; Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015,10(5)Itakura H.; Achrol A.S.; Mitchell L.A.; Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015,7(303)Ion-Margineanu A.; Van Cauter S.; Sima D.M.; Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Res Int 2015,2015Durst C.R.; Raghavan P.; Shaffrey M.E.; Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014,56(2),107-115Yoon J.H.; Kim J.H.; Kang W.J.; Grading of cerebral glioma with multi-parametric MR Imaging and 18F-FDG-PET: concordance and accuracy. European Radiol 2014,24(2),380-389Demerath T.; Simon-Gabriel C.P.; Kellner E.; Mesoscopic imaging of glioblastomas: are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2017,30(1),36-47Qin L.; Li X.; Stroiney A.; Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology 2017,59(2),135-145Boult J.K.R.; Borri M.; Jury A.; Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed 2016,29(11),1608-1617Server A.; Kulle B.; Gadmar Ø.B.; Josefsen R.; Kumar T.; Nakstad P.H.; Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 2011,80(2),462-470Chang P.D.; Chow D.S.; Yang P.H.; Filippi C.G.; Lignelli A.; Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 2017,208(1),57-65Yi C.; Shangjie R.; Volume of high-risk intratumoralsubregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur Radiol 2017,27,3583-3592Khalifa J.; Tensaouti F.; Chaltiel L.; Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol 2016,26(11),4194-4203Prateek P.; Jay P.; Partovi S.; Madabhushi A.; Tiwari P.; Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastomamultiforme: preliminary findings. Eur Radiol 2017,27(10),4188-4197Lemasson B.; Chenevert T.L.; Lawrence T.S.; Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 2013,6(6),766-774Inano R.; Oishi N.; Kunieda T.; Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images. Sci Rep 2016,6,30344Delgado-Goñi T.; Ortega-Martorell S.; Ciezka M.; MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed 2016,29(6),732-743Cui Y.; Tha K.K.; Terasaka S.; Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016,278(2),546-553Price S.J.; Young A.M.H.; Scotton W.J.; Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016,43(2),487-494Sauwen N.; Acou M.; Van Cauter S.; Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 2016,12,753-764Jena A.; Taneja S.; Gambhir A.; Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016,41(5),e228-e236Kim H.S.; Goh M.J.; Kim N.; Choi C.G.; Kim S.J.; Kim J.H.; Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014,273(3),831-843Christoforidis G.A.; Yang M.; Abduljalil A.; “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012,264(1),210-217Wang S.; Kim S.; Chawla S.; Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011,32(3),507-514Hanahan D.; Weinberg R.A.; Hallmarks of cancer: the next generation. Cell 2011,144(5),646-674Macdonald D.R.; Cascino T.L.; Schold S.C.; Cairncross J.G.; Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990,8(7),1277-1280Wen P.Y.; Macdonald D.R.; Reardon D.A.; Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010,28(11),1963-1972Sorensen A.G.; Batchelor T.T.; Wen P.Y.; Zhang W-T.; Jain R.K.; Response criteria for glioma. Nat Clin Pract Oncol 2008,5(11),634-644Rosenkrantz A.B.; Friedman K.; Chandarana H.; Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016,206(1),162-172Castiglioni I.; Gallivanone F.; Canevari C.; Hybrid PET/MRI for In vivo imaging of cancer: current clinical experiences and recent advances. Curr Med Imaging 2016,12,106Mainta I.C.; Perani D.; Delattre B.M.A.; FDG PET/MR imaging in major neurocognitive disorders. Curr Alzheimer Res 2017,14,186-197Marner L.; Henriksen O.M.; Lundemann M.; Larsen V.A.; Law I.; Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017,5(2),135-149R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. Available from: https://www.R-project.org
    corecore