151 research outputs found

    Genome sequence of the entomopathogenic Serratia entomophila isolate 626 and characterisation of the species specific itaconate degradation pathway

    Get PDF
    Background: Isolates of Serratia entomophila and S. proteamaculans (Yersiniaceae) cause disease specifc to the endemic New Zealand pasture pest, Costelytra giveni (Coleoptera: Scarabaeidae). Previous genomic profling has shown that S. entomophila isolates appear to have conserved genomes and, where present, conserved plasmids. In the absence of C. giveni larvae, S. entomophila prevalence reduces in the soil over time, suggesting that S. entomophila has formed a host-specifc relationship with C. giveni. To help define potential genetic mechanisms driving retention of the chronic disease of S. entomophila, the genome of the isolate 626 was sequenced, enabling the identifcation of unique chromosomal properties, and defining the gain/loss of accessory virulence factors relevant to pathogenicity to C. giveni larvae. Results: We report the complete sequence of S. entomophila isolate 626, a causal agent of amber disease in C. giveni larvae. The genome of S. entomophila 626 is 5,046,461 bp, with 59.1% G+C content and encoding 4,695 predicted CDS. Comparative analysis with five previously sequenced Serratia species, S. proteamaculans 336X, S. marcescens Db11, S. nematodiphila DH-S01, S. grimesii BXF1, and S. ficaria NBRC 102596, revealed a core of 1,165 genes shared. Further comparisons between S. entomophila 626 and S. proteamaculans 336X revealed fewer predicted phage-like regions and genomic islands in 626, suggesting less horizontally acquired genetic material. Genomic analyses revealed the presence of a four-gene itaconate operon, sharing a similar gene order as the Yersinia pestis ripABC complex. Assessment of a constructed 626::RipC mutant revealed that the operon confer a possible metabolic advantage to S. entomophila in the initial stages of C. giveni infection. Conclusions: Evidence is presented where, relative to S. proteamaculans 336X, S. entomophila 626 encodes fewer genomic islands and phages, alluding to limited horizontal gene transfer in S. entomophila. Bioassay assessments of a S. entomophila-mutant with a targeted mutation of the itaconate degradation region unique to this species, found the mutant to have a reduced capacity to replicate post challenge of the C. giveni larval host, implicating the itaconate operon in establishment within the host

    The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota

    Get PDF
    A variety of fermented foods have been linked to improved human health, but their impacts on the gut microbiome have not been well characterized. Dairy products are one of the most popular fermented foods and are commonly consumed worldwide. One area we currently lack data on is how the process of fermentation changes the gut microbiota upon digestion. What is even less well characterized are the possible differences between cow and other mammals’ milks. Our aim was to compare the impact of unfermented skim milk and fermented skim milk products (milk/yogurt) originating from two species (cow/sheep) on the gut microbiome using a rat model. Male Sprague-Dawley rats were fed a dairy-free diet supplemented with one of four treatment dairy drinks (cow milk, cow yogurt, sheep milk, sheep yogurt) for 2 weeks. The viable starter culture bacteria in the yogurts were depleted in this study to reduce their potential influence on gut bacterial communities. At the end of the study, cecal samples were collected and the bacterial community profiles determined via 16S rRNA high-throughput sequencing. Fermentation status drove the composition of the bacterial communities to a greater extent than their animal origin. While overall community alpha diversity did not change among treatment groups, the abundance of a number of taxa differed. The cow milk supplemented treatment group was distinct, with a higher intragroup variability and a distinctive taxonomic composition. Collinsella aerofaciens was of particularly high abundance (9%) for this group. Taxa such as Firmicutes and Lactobacillus were found in higher abundance in communities of rats fed with milk, while Proteobacteria, Bacteroidetes, and Parabacteroides were higher in yogurt fed rats. Collinsella was also found to be of higher abundance in both milk (vs. yogurt) and cows (vs. sheep). This research provides new insight into the effects of unfermented vs. fermented milk (yogurt) and animal origin on gut microbial composition in a healthy host. A number of differences in taxonomic abundance between treatment groups were observed. Most were associated with the effects of fermentation, but others the origin species, or in the case of cow milk, unique to the treatment group. Future studies focusing on understanding microbial metabolism and interactions, should help unravel what drives these differences

    U-Pb zircon age for a tuff in the Campbell Group, Griqualand West Sequence, South Africa

    Get PDF
    An ion-microprobe U-Pb age of 2552+ or -11 Ma has been obtained on zircon separated from a regional banded-tuff horizon in the Nauga Formation (Beukes, 1980b) (upper Campbell Group, Griqualand West Sequence, South Africa). This age permits time constraints to be placed on lithologically correlated units within the adjacent Transvaal Sequence and correlations to be made with the further removed Hamersley Group in Australia. Calculated rock accumulation rates of 2 to 4 m/m.y. for these strata of mainly shale and banded iron formation suggest that sedimentation rates were significantly slower in the late Archean-Early Proterozoic than is generally assumed

    Exploring rumen microbe-derived fibre-degrading activities for improving feed digestibility

    Get PDF
    Ruminal fibre degradation is mediated by a complex community of rumen microbes, and its efficiency is crucial for optimal dairy productivity. Enzymes produced by rumen microbes are primarily responsible for degrading the complex structural polysaccharides that comprise fibre in the plant cell walls of feed materials. Because rumen microbes have evolved with their ruminant hosts over millions of years to perform this task, their enzymes are hypothesised to be optimally suited for activity at the temperature, pH range, and anaerobic environment of the rumen. However, fibre-rich diets are not fully digested, which represents a loss in potential animal productivity. Thus, there is opportunity to improve fibre utilisation through treating feeds with rumen microbe-derived fibrolytic enzymes and associated activities that enhance fibre degradation. This research aims to gain a better understanding of the key rumen microbes involved in fibre degradation and the mechanisms they employ to degrade fibre, by applying cultivation-based and culture-independent genomics approaches to rumen microbial communities of New Zealand dairy cattle. Using this knowledge, we aim to identify new opportunities for improving fibre degradation to enhance dairy productivity. Rumen content samples were taken over the course of a year from a Waikato dairy production herd. Over 1,000 rumen bacterial cultures were obtained from the plant-adherent fraction of the rumen contents. Among these cultures, two, 59 and 103 potentially new families, genera and species of rumen bacteria were identified, respectively. Many of the novel strains are being genome sequenced within the Hungate 1000 rumen microbial reference genome programme, which is providing deeper insights into the range of mechanisms used by the individual strains for fibre degradation. This information has been used to guide the selection of rumen bacterial strains with considerable potential as fibrolytic enzyme producers in vitro, with the intent of developing the strains so that their enzymes may be used as feed pre-treatments for use on farm. Culture-independent metagenomic approaches were also used to explore the activities involved in fibre degradation from the rumen microbial communities. Functional screening has revealed a range of novel enzymes and a novel fibre disrupting activity. Enrichment for the cell-secreted proteins from the community revealed evidence of a diverse range of cellulosomes, which are cell-surface associated multi-enzyme complexes that efficiently degrade plant cell wall polysaccharides. Biochemical and structural characterisation of these proteins has been conducted. In conclusion, cultivation and culture-independent genomic approaches have been applied to New Zealand bovine rumen microbial communities, and have provided considerable new insights into ruminal fibre degradation processes. Novel activities and bacterial species that display desirable activities on fibrous substrates in vitro are now being explored for their potential to improve ruminal fibre degradation, to allow the development of new technologies that will enhance dairy productivity

    Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms

    Get PDF
    Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure

    The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine

    Get PDF
    The lactose operon (lacTEGF) from Lactobacillus casei strain BL23 has been previously studied. The lacT gene codes for a transcriptional antiterminator, lacE and lacF for the lactose-specific phosphoenolpyruvate: phosphotransferase system (PTSLac) EIICB and EIIA domains, respectively, and lacG for the phospho-Ξ²-galactosidase. In this work, we have shown that L. casei is able to metabolize N-acetyllactosamine (LacNAc), a disaccharide present at human milk and intestinal mucosa. The mutant strains BL153 (lacE) and BL155 (lacF) were defective in LacNAc utilization, indicating that the EIICB and EIIA of the PTSLac are involved in the uptake of LacNAc in addition to lactose. Inactivation of lacG abolishes the growth of L. casei in both disaccharides and analysis of LacG activity showed a high selectivity toward phosphorylated compounds, suggesting that LacG is necessary for the hydrolysis of the intracellular phosphorylated lactose and LacNAc. L. casei (lacAB) strain deficient in galactose-6P isomerase showed a growth rate in lactose (0.0293 ± 0.0014 h-1) and in LacNAc (0.0307 ± 0.0009 h-1) significantly lower than the wild-type (0.1010 ± 0.0006 h-1 and 0.0522 ± 0.0005 h-1, respectively), indicating that their galactose moiety is catabolized through the tagatose-6P pathway. Transcriptional analysis showed induction levels of the lac genes ranged from 130 to 320-fold in LacNAc and from 100 to 200-fold in lactose, compared to cells growing in glucose

    Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)

    Get PDF
    The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0–14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples, possibly due to more stable and favorable laboratory conditions. The maintenance of highly diverse natural microbialites in laboratory aquaria holds promise to study the role of different metabolisms in the formation of these structures under controlled conditions

    Lactobacillaceae and Cell Adhesion: Genomic and Functional Screening

    Get PDF
    The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment

    Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model

    Get PDF
    The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle
    • …
    corecore