103 research outputs found

    Identification of Serotonergic Neuronal Modules that Affect Aggressive Behavior

    Get PDF
    SummaryEscalated aggression can have devastating societal consequences, yet underlying neurobiological mechanisms are poorly understood. Here, we show significantly increased inter-male mouse aggression when neurotransmission is constitutively blocked from either of two subsets of serotonergic, Pet1+ neurons: one identified by dopamine receptor D1(Drd1a)::cre-driven activity perinatally, and the other by Drd2::cre from pre-adolescence onward. Blocking neurotransmission from other Pet1+ neuron subsets of similar size and/or overlapping anatomical domains had no effect on aggression compared with controls, suggesting subtype-specific serotonergic neuron influences on aggression. Using established and novel intersectional genetic tools, we further characterized these subtypes across multiple parameters, showing both overlapping and distinct features in axonal projection targets, gene expression, electrophysiological properties, and effects on non-aggressive behaviors. Notably, Drd2::cre marked 5-HT neurons exhibited D2-dependent inhibitory responses to dopamine in slices, suggesting direct and specific interplay between inhibitory dopaminergic signaling and a serotonergic subpopulation. Thus, we identify specific serotonergic modules that shape aggression

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Gene Activation Using FLP Recombinase in C. elegans

    Get PDF
    The FLP enzyme catalyzes recombination between specific target sequences in DNA. Here we use FLP to temporally and spatially control gene expression in the nematode C. elegans. Transcription is blocked by the presence of an “off cassette” between the promoter and the coding region of the desired product. The “off cassette” is composed of a transcriptional terminator flanked by FLP recognition targets (FRT). This sequence can be excised by FLP recombinase to bring together the promoter and the coding region. We have introduced two fluorescent reporters into the system: a red reporter for promoter activity prior to FLP expression and a green reporter for expression of the gene of interest after FLP expression. The constructs are designed using the multisite Gateway system, so that promoters and coding regions can be quickly mixed and matched. We demonstrate that heat-shock-driven FLP recombinase adds temporal control on top of tissue specific expression provided by the transgene promoter. In addition, the temporal switch is permanent, rather than acute, as is usually the case for heat-shock driven transgenes. Finally, FLP expression can be driven by a tissue specific promoter to provide expression in a subset of cells that can only be addressed as the intersection of two available promoters. As a test of the system, we have driven the light chain of tetanus toxin, a protease that cleaves the synaptic vesicle protein synaptobrevin. We show that we can use this to inactivate synaptic transmission in all neurons or a subset of neurons in a FLP-dependent manner

    FLPe functions in zebrafish embryos

    Get PDF
    To assay the efficiency of the FLP/FRT site-specific recombination system in Danio rerio, a construct consisting of a muscle-specific promoter driving EGFP flanked by FRT sites was developed. FLPe capped RNA was microinjected into transgenic single cell stage zebrafish embryos obtained by crossing hemizygous transgenic males with wild-type females. By 48 h post fertilization (hpf), the proportion of embryos displaying green fluorescence following FLPe RNA microinjection was significantly lower (7.7%; P < 0.001) than would be expected from a cross in the absence of the recombinase (50%). Embryos that retained fluorescence displayed marked mosaicism. Inheritance of the excised transgene in non-fluorescent, transgenic embryos was verified by PCR analysis and FLPe-mediated recombination was confirmed by DNA sequencing. Sperm derived from confirmed transgenic males in these experiments was used to fertilize wild-type eggs to determine whether germline excision of the transgene had occurred. Clutches sired by FLPe-microinjected males contained 0–4% fluorescent embryos. Transgenic males that were phenotypically wild-type produced no fluorescent progeny, demonstrating complete excision of the transgene from their germline. FLPe microinjected males that retained some fluorescent muscle expression produced a small proportion of fluorescent offspring, suggesting that in mosaic males not all germline cells had undergone FLPe-mediated transgene excision. Our results show that FLPe, which is derived from Saccharomyces cerevisiae, is an efficient recombinase in zebrafish maintained at 28.5°C

    Temporally-Controlled Site-Specific Recombination in Zebrafish

    Get PDF
    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreERT2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms

    Split-Cre Complementation Indicates Coincident Activity of Different Genes In Vivo

    Get PDF
    Cre/LoxP recombination is the gold standard for conditional gene regulation in mice in vivo. However, promoters driving the expression of Cre recombinase are often active in a wide range of cell types and therefore unsuited to target more specific subsets of cells. To overcome this limitation, we designed inactive “split-Cre” fragments that regain Cre activity when overlapping co-expression is controlled by two different promoters. Using transgenic mice and virus-mediated expression of split-Cre, we show that efficient reporter gene activation is achieved in vivo. In the brain of transgenic mice, we genetically defined a subgroup of glial progenitor cells in which the Plp1- and the Gfap-promoter are simultaneously active, giving rise to both astrocytes and NG2-positive glia. Similarly, a subset of interneurons was labelled after viral transfection using Gad67- and Cck1 promoters to express split-Cre. Thus, split-Cre mediated genomic recombination constitutes a powerful spatial and temporal coincidence detector for in vivo targeting

    Conditional Transgenesis Using Dimerizable Cre (DiCre)

    Get PDF
    Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. We have recently developed a conceptually new approach to regulate Cre recombinase, that we have called Dimerizable Cre or DiCre. It is based on splitting Cre into two inactive moieties and fusing them to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin associated protein), respectively. These latter can be efficiently hetero-dimerized by rapamycin, leading to the reinstatement of Cre activity. We have been able to show, using in vitro approaches, that this ligand-induced dimerization is an efficient way to regulate Cre activity, and presents a low background activity together with a high efficiency of recombination following dimerization. To test the in vivo performance of this system, we have, in the present work, knocked-in DiCre into the Rosa26 locus of mice. To evaluate the performance of the DiCre system, mice have been mated with indicator mice (Z/EG or R26R) and Cre-induced recombination was examined following activation of DiCre by rapamycin during embryonic development or after birth of progenies. No recombination could be observed in the absence of treatment of the animals, indicating a lack of background activity of DiCre in the absence of rapamycin. Postnatal rapamycin treatment (one to five daily injection, 10 mg/kg i.p) induced recombination in a number of different tissues of progenies such as liver, heart, kidney, muscle, etc. On the other hand, recombination was at a very low level following in utero treatment of DiCre×R26R mice. In conclusion, DiCre has indeed the potentiality to be used to establish conditional Cre-deleter mice. An added advantage of this system is that, contrary to other modulatable Cre systems, it offers the possibility of obtaining regulated recombination in a combinatorial manner, i.e. induce recombination at any desired time-point specifically in cells characterized by the simultaneous expression of two different promoters

    Widespread Contribution of Gdf7 Lineage to Cerebellar Cell Types and Implications for Hedgehog-Driven Medulloblastoma Formation

    Get PDF
    The roof plate is a specialized embryonic midline tissue of the central nervous system that functions as a signaling center regulating dorsal neural patterning. In the developing hindbrain, roof plate cells express Gdf7 and previous genetic fate mapping studies showed that these cells contribute mostly to non-neural choroid plexus epithelium. We demonstrate here that constitutive activation of the Sonic hedgehog signaling pathway in the Gdf7 lineage invariably leads to medulloblastoma. Lineage tracing analysis reveals that Gdf7-lineage cells not only are a source of choroid plexus epithelial cells, but are also present in the cerebellar rhombic lip and contribute to a subset of cerebellar granule neuron precursors, the presumed cell-of-origin for Sonic hedgehog-driven medulloblastoma. We further show that Gdf7-lineage cells also contribute to multiple neuronal and glial cell types in the cerebellum, including glutamatergic granule neurons, unipolar brush cells, Purkinje neurons, GABAergic interneurons, Bergmann glial cells, and white matter astrocytes. These findings establish hindbrain roof plate as a novel source of diverse neural cell types in the cerebellum that is also susceptible to oncogenic transformation by deregulated Sonic hedgehog signaling

    Postnatal Changes in the Expression Pattern of the Imprinted Signalling Protein XLαs Underlie the Changing Phenotype of Deficient Mice

    Get PDF
    The alternatively spliced trimeric G-protein subunit XLαs, which is involved in cAMP signalling, is encoded by the Gnasxl transcript of the imprinted Gnas locus. XLαs deficient mice show neonatal feeding problems, leanness, inertia and a high mortality rate. Mutants that survive to weaning age develop into healthy and fertile adults, which remain lean despite elevated food intake. The adult metabolic phenotype can be attributed to increased energy expenditure, which appears to be caused by elevated sympathetic nervous system activity. To better understand the changing phenotype of Gnasxl deficient mice, we compared XLαs expression in neonatal versus adult tissues, analysed its co-localisation with neural markers and characterised changes in the nutrient-sensing mTOR1-S6K pathway in the hypothalamus. Using a newly generated conditional Gnasxl lacZ gene trap line and immunohistochemistry we identified various types of muscle, including smooth muscle cells of blood vessels, as the major peripheral sites of expression in neonates. Expression in all muscle tissues was silenced in adults. While Gnasxl expression in the central nervous system was also developmentally silenced in some midbrain nuclei, it was upregulated in the preoptic area, the medial amygdala, several hypothalamic nuclei (e.g. arcuate, dorsomedial, lateral and paraventricular nuclei) and the nucleus of the solitary tract. Furthermore, expression was detected in the ventral medulla as well as in motoneurons and a subset of sympathetic preganglionic neurons of the spinal cord. In the arcuate nucleus of Gnasxl-deficient mice we found reduced activity of the nutrient sensing mTOR1-S6K signalling pathway, which concurs with their metabolic status. The expression in these brain regions and the hypermetabolic phenotype of adult Gnasxl-deficient mice imply an inhibitory function of XLαs in energy expenditure and sympathetic outflow. By contrast, the neonatal phenotype of mutant mice appears to be due to a transient role of XLαs in muscle tissues

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes
    corecore