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SUMMARY

Escalated aggression can have devastating socie-
tal consequences, yet underlying neurobiological
mechanisms are poorly understood. Here, we show
significantly increased inter-male mouse aggression
when neurotransmission is constitutively blocked
from either of two subsets of serotonergic, Pet1+

neurons: one identified by dopamine receptor
D1(Drd1a)::cre-driven activity perinatally, and the
other by Drd2::cre from pre-adolescence onward.
Blocking neurotransmission from other Pet1+ neuron
subsets of similar size and/or overlapping anatom-
ical domains had no effect on aggression compared
with controls, suggesting subtype-specific seroto-
nergic neuron influences on aggression. Using es-
tablished and novel intersectional genetic tools, we
further characterized these subtypes across multiple
parameters, showing both overlapping and distinct
features in axonal projection targets, gene expres-
sion, electrophysiological properties, and effects
on non-aggressive behaviors. Notably, Drd2::cre
marked 5-HT neurons exhibited D2-dependent inhib-
itory responses to dopamine in slices, suggesting
direct and specific interplay between inhibitory
dopaminergic signaling and a serotonergic subpop-
ulation. Thus, we identify specific serotonergic mod-
ules that shape aggression.
INTRODUCTION

Throughout the animal kingdom, species-typical aggressive be-

haviors are used to acquire or safeguard food, mating partners,

progeny, and territory, and are essential for individual and popu-

lation survival (Marler, 1976). Even though specific behavior pat-

terns differ between species, the motivation toward aggression
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has been strongly conserved evolutionarily (Lorenz, 1966). Like-

wise, aggression is an inherent thread in the fabric of human

society, but when escalated and uncontrolled, as can occur in

disorders such as schizophrenia, intermittent explosive disorder,

autism, or even dementia (Volavka, 2002), the outcome can be

detrimental to the individual and society. Across these varied

DSM-V (American Psychiatric Association, 2013) disease cate-

gories, the behavioral presentation of aggression is one integral

endophenotype, perhaps reflecting a shared underlying compo-

nent at the level of specific cells, circuits, and/or genes, as

conceptually put forth by National Institute of Mental Health’s

(NIMH’s) RDoC (Research Domain Criteria; https://www.nimh.

nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtml).

Here we discriminate specific brain serotonergic neuronal sub-

types linked to abnormally high levels of inter-male aggression

in mice and analyze these neuronal modules across multiple

levels (RDoC ‘‘units of analysis’’), from the molecular and cellular

to the organismal.

Motivating this work in part are themany pharmacological ma-

nipulations and gene association studies establishing serotonin

(5-hydroxytryptamine, 5-HT) and the neurons that produce it

as shaping aggression levels in animals and humans (Audero

et al., 2013; Lesch and Merschdorf, 2000; Zalsman et al.,

2011; Takahashi and Miczek, 2014). Increasingly, evidence

points to an association between decreased serotonergic tone

in the adult and an increased potential for pathological aggres-

sion (Hendricks et al., 2003; Takahashi and Miczek, 2014; Sau-

dou et al., 1994; Audero et al., 2013; Angoa-Pérez et al., 2012;

Mosienko et al., 2012; Alenina et al., 2009). In line, current treat-

ments for patients displaying impulsive aggression include

substances that enhance 5-HT levels, e.g., selective serotonin

reuptake inhibitors (Bond, 2005; Coccaro and Kavoussi, 1997;

Reist et al., 2003) or monoamine oxidase A inhibitors (Hollander,

1999). Such treatments, though, target the entire serotonergic

neuronal system and thus can trigger undesirable and even

dangerous side effects because of the multiplicity of behaviors

and physiological processes modulated by 5-HT (reviewed in

Hale et al., 2012 and Lucki, 1998). Increasing evidence suggests

that the many functions modulated by the serotonergic system
uthors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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are, at least partially, the collective result of distinct serotonergic

neuronal modules, each governing a particular set of functions

(Brust et al., 2014; Molliver, 1987; Fernandez et al., 2015; Gaspar

and Lillesaar, 2012; Hale et al., 2012; Kim et al., 2009; Okaty

et al., 2015). A key question, then, is whether there are special-

ized distinct serotonergic neurons that shape facets of aggres-

sion or whether instead, global changes in serotonergic tone

are necessary.

Recent work has demonstrated the utility of subdividing the

5-HT neuronal system based on patterns of gene expression

therein identifying distinct molecular subtypes of serotonergic

neurons that can be targeted for functional studies (Brust

et al., 2014; Spaethling et al., 2014; Commons et al., 2003; Fox

and Deneris, 2012; Wylie et al., 2010; Fernandez et al., 2015;

Jensen et al., 2008; Okaty et al., 2015). To test whether special-

ized serotonergic neurons involved in establishing normative

levels of aggression exist, we implemented intersectional ge-

netic strategies in mice (Awatramani et al., 2003; Jensen et al.,

2008; Kim et al., 2009) to functionally silence molecularly defined

subsets of serotonergic neurons and assess the effects on

aggressive behavior. Resultant findings reveal functional modu-

larity within the serotonergic neuronal system at the behavioral,

cellular, and hodological levels, providing insight into the cellular

and molecular substrates that may influence behaviors such as

aggression.

RESULTS

Neurotransmission by Serotonergic Neurons Is
Required for Normative Levels of Adult Inter-male
Rodent Aggression
We employed molecular genetic tools to probe whether neuro-

transmission from serotonergic neurons is required for normative

levels of aggressive behavior in adult male mice, and if so, to

determine which subtypes of serotonergic neurons underlie

this function. We ‘‘silenced’’ vesicular neurotransmission from

5-HT neurons constitutively through recombinase-dependent

expression of a tetanus toxin light chain-GFP fusion, referred

to throughout as ‘‘tox’’ (Kim et al., 2009), which impedes

Vamp2-dependent exocytosis of neurotransmitters. We previ-

ously established tox as potent and effective in serotonergic

neurons (Kim et al., 2009).

Using a double-transgenic strategy pairing the pan-seroto-

nergic ePet::cre driver (Scott et al., 2005) with the Cre-respon-

sive RC::Ptox allele (Kim et al., 2009) (Figure 1A), we observed

robust and reproducible tox expression restricted to regions

containing the serotonergic raphe nuclei in double-transgenic

ePet::cre, RC::Ptox animals (referred to here as Pet1-silenced

animals; Figure 1B), but not single-transgenic RC::Ptox control

littermates (Figure 1C). Immunohistochemical analyses of brain

tissue from double-transgenic ePet::cre, RC::Ptox mice further

showed that 5-HT-positive axonal varicosities and synaptic bou-

tons were diminished in VAMP2, consistent with VAMP2 cleav-

age by tox, the documented method of tetanus toxin light

chain activity (Link et al., 1992; Kim et al., 2009) (Figures 1D

and 1E). Additionally, serotonergic axonal processes in brains

of ePet::cre, RC::Ptoxmice appeared enlarged qualitatively (Fig-

ure 1D) relative to controls (Figure 1E), consistent with a buildup
of 5-HT-loaded vesicles caused by disrupted release (Kim et al.,

2009). Finally, microdialysis experiments (Figure 1F) sampling

the medial prefrontal cortex (mPFC; Figure S1), a known projec-

tion target of serotonin neurons (Azmitia and Segal, 1978),

demonstrated a near absence of extracellular 5-HT in ePet::cre,

RC::Ptox transgenic mice at baseline (controls versus ePet::cre,

RC::Ptox, Mann-Whitney U test (M-W U) < 0.0001, p = 0.008).

Systemic administration of fenfluramine (3 mg/kg i.p. [intraperi-

toneally]), which has been shown to induce serotonin release

via reversal of the serotonin transporter (Rothman et al., 2003),

increased extracellular 5-HT in both Pet1-silenced and control

siblings (main effect of time course F(9, 119) = 17.1; p < 0.001;

Figure 1G), although serotonin levels remained higher in controls

(main effect of genotype F(1, 119) = 10.3; p = 0.009). These data

suggest that normal vesicular 5-HT releasewas blocked, but that

viable axons were still present in the mPFC of ePet::cre,

RC::Ptox mice.

To determine the impact of en masse silencing of serotonergic

neurons on aggressive behaviors, we subjected individual Pet1-

silenced mice and sibling controls to an ethologically guided

version of the resident-intruder (R-I) assay (Fish et al., 1999; Mic-

zek and O’Donnell, 1978) (Figure 1H). Each test mouse (resident

male) was ‘‘primed’’ with a brief non-contact exposure to a male

breeder, after which an intruder male was placed into the resi-

dent’s home cage. This assay provided high enough baseline

levels of aggression to detect increases or decreases (Miczek

and O’Donnell, 1978; Fish et al., 1999).

Using this assay, Pet1-silenced mice displayed more aggres-

sion than control siblings. Pet1-silenced mice delivered signifi-

cantly more attack bites (Figure 1I; 17.0 ± 1.7 [Pet1-silenced,

n = 10] versus 8.1 ± 1.7 [control, non-tox-expressing siblings,

n = 20]; M-W U = 38, p = 0.005; breakdown of sibling controls

by single-transgenic genotype is shown in Figure S2A), dis-

played significantly more lateral threats toward intruders

(30.1 ± 3.4 versus 15.6 ± 3.6; M-W U = 51.5, p = 0.03; Figure 1J),

and spent significantly more time tail rattling than controls (3.5 ±

1.0 s versus 1.4 ± 0.4 s; M-W U = 45, p = 0.01; Table S1).

Although Pet1-silenced mice tended to demonstrate their first

attack bite sooner and to pursue intruders more often than

controls, these differences did not reach statistical significance

(Table S1).

These data are consistent with the model that functional defi-

ciency in serotonergic neurons is associated with increased

aggression (Hendricks et al., 2003; Audero et al., 2013; Angoa-

Pérez et al., 2012; Mosienko et al., 2012; Alenina et al., 2009).

The present findings further establish an experimental platform

with which to delineate those serotonergic neurons that are

responsible for these effects on aggression.

Specific Subtypes of Brain Serotonergic Neurons Shape
Inter-male Aggression Levels
We used a dual-recombinase (Cre and Flpe)-based intersec-

tional approach (Figure 2) (Jensen et al., 2008; Awatramani

et al., 2003; Kim et al., 2009; Ray et al., 2011; Dymecki et al.,

2010) to test whether there exist specialized aggression-influ-

encing subtypes of serotonergic neurons. By leveraging molec-

ular differences across serotonergic neurons to drive tox expres-

sion, we silenced discrete molecular subtypes of serotonergic
Cell Reports 17, 1934–1949, November 15, 2016 1935



Figure 1. Silencing Serotonin Neurons En Masse Increases Aggression
(A) Schematic illustrates strategy for pan-serotonergic tox-mediated silencing. Silencing of Pet1 neurons was accomplished by pairing RC::Ptox, a Cre-only

responsive derivative allele of RC::PFtox, with the driver ePet::cre.

(B and C) Photomicrographs of the dorsal raphe showing immunostaining for GFP from ePet::cre, RC::Ptox (B) and RC::Ptox control (C) mice illustrate the

effectiveness of tox-GFP fusion protein expression when ePet::cre is present. Scale bar, 500 mm.

(D and E) Serotonergic axon terminals in the trigeminal nucleus show that Vamp2 staining is absent from serotonergic terminals in ePet::cre, RC::Ptox mice

(D, no yellow), but that immuno-labeled 5-HT and Vamp2 colocalize in RC::Ptox controls (E, yellow). Scale bar, 5 mm.

(F) As measured by in vivo microdialysis, baseline serotonin levels (mean ± SEM) in the mPFC were significantly lower in ePet::cre, RC::Ptox (orange) than in

RC::Ptox (white) controls (M-W U < 0.0001, p = 0.008).

(G) 5-HT levels (mean ± SEM) in mPFC dialysate samples from ePet::cre, RC::Ptox (orange) and control (white) mice before and after administration of

dexfenfluramine (3 mg/kg i.p.), which induces non-exocytotic release of neurotransmitter.

(H) Timeline of experimental design for resident-intruder assay illustrating rearing and housing conditions of male test subjects (residents).

(I) Number of attack bites (mean ± SEM) demonstrated by ePet::cre, RC::Ptox mice (orange) and control siblings (white) during the resident-intruder assays

(M-W U = 38, p = 0.005).

(J) Number of lateral threats (mean ± SEM) demonstrated by ePet::cre, RC::Ptox mice (orange) and control siblings (white) during the resident-intruder assays

(M-W U = 51.5, p = 0.03).
neurons and assayed the impact on aggression using the resi-

dent-intruder test described above.

To gain genetic access to molecular subsets of serotonergic

neurons, we partnered the intersectional reporter allele RC::

FrePe (Figure 2A) (Bang et al., 2012; Brust et al., 2014) or

silencing allele RC::PFtox (Figure 2B) (Kim et al., 2009), respec-

tively, with the pan-serotonergic Pet1::Flpe driver and one of
1936 Cell Reports 17, 1934–1949, November 15, 2016
multiple cre driver lines.We chose five cre drivers whose expres-

sion delineates subsets distributed throughout the serotonergic

raphe nuclei. Three of these drivers (Gong et al., 2007) targeted

subtypes with constituent neurons residing in the dorsal raphe

nucleus (DR): dopamine receptor type-I (Drd1a::cre), dopamine

receptor type-II (Drd2::cre), and corticotropin-releasing factor

(Crf::cre). We additionally selected two cre drivers, r2Hoxa2::cre



Figure 2. Serotonergic Subtypes that Modulate Aggression

(A and B) Schematics illustrate strategies for labeling (A) or silencing (B) subtypes of serotonergic neurons.

(C, C0, D, and D0) Cartoons of a sagittal brain slice illustrate the distributions of the Drd1a/Pet1 (C) and Drd2/Pet1 subtypes (D) within the serotonergic raphe

(B1-B9). Photomicrographs show the presence of GFP+ Drd1a/Pet1 (C0) and GFP+ Drd2/Pet1 neurons (D0) within the context of the remaining Pet1+ population

labeled by mCherry in coronal brain slices through the DR (B7). Scale bar, 50 mm (C0).
(E and F) Drd1a/Pet1-silenced (E) and Drd2/Pet1-silenced (F) mice exhibited more attack bites than control siblings during the resident-intruder assay (Drd1a/

Pet1: M-W U = 75, p = 0.023; Drd2/Pet1: M-W U = 42, p = 0.036).

(G) Number of GFP+ neurons (mean ± SEM) for each of the five subtypes detected using the RC::FrePe reporter allele in the serotonergic raphe system of male

mice (P90; one-way ANOVA, F(4,10) = 10.47, p = 0.001, Fisher’s LSD, p < 0.05).

Cb, cerebellum.
(Awatramani et al., 2003) and Egr2::cre (Voiculescu et al., 2000),

which together encapsulate most median raphe (MR; also

referred to as the prepontine raphe [PnR]; Alonso et al., 2013)
and raphe magnus (RMg) neurons (Jensen et al., 2008), respec-

tively.We refer to the captured intersectional neuron subtypes as

Drd1a/Pet1 (Figures 2C and C0), Drd2/Pet1 (Figures 2D and 2D0),
Cell Reports 17, 1934–1949, November 15, 2016 1937
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Crf/Pet1 (Figures S3A and S3A0), r2Hoxa2/Pet1 (Figures S3B and

S3B0), and Egr2/Pet1 (Figures S3C and S3C0).
We analyzed the effect of tox-mediated silencing of each

molecularly defined neuronal subtype. Silencing of either the

Drd1a/Pet1 or the Drd2/Pet1 neuron subtypes resulted in an in-

crease in number of attack bites compared with non-tox-ex-

pressing littermate controls (Drd1a/Pet1-silenced [n = 11]:

14.3 ± 2.7 attack bites, control siblings [n = 26]: 7.3 ± 1.4 attack

bites, M-WU = 75, p = 0.023;Drd2/Pet1-silenced [n = 11]: 17.7 ±

3.0 attack bites, control siblings [n = 15]: 9.2 ± 2.2 attack bites,

M-W U = 42, p = 0.036; Figures 2E and 2F; breakdown of con-

trols by genotype shown in Figures S2B and S2C). By contrast,

silencing of Crf/Pet1 neurons (n = 12, 10.6 ± 3.1 attack bites),

r2HoxA2/Pet1 neurons (n = 11, 7.8 ± 1.7 attack bites), or Egr2/

Pet1 neurons (n = 12, 7.6 ± 2.1 attack bites) did not increase

the number of attack bites relative to control siblings (Crf/Pet1

controls: n = 22, 10.9 ± 1.7 attack bites, U = 170, p = 0.75;

r2HoxA2/Pet1 controls: n = 24, 4.5 ± 1.1 attack bites, M-W

U = 94.5, p = 0.14; Egr2/Pet1 controls: n = 23, 8.6 ± 1.8 attack

bites, M-W U = 132.5, p = 0.85; Figures S3D–S3F and S4).

We next queriedwhether silencing ofDrd1a/Pet1 orDrd2/Pet1

neurons affected other aspects of aggressive behavior (Table

S2). We observed a significant increase in the number of lateral

threats when we silenced either of the two subtypes (Drd1a/

Pet1-silenced: 26.6 ± 4.8 versus control siblings: 13.8 ± 2.9,

M-W U = 76.5, p = 0.025; Drd2/Pet1-silenced: 34.5 ± 6.3 versus

control siblings: 15.0 ± 3.5, M-W U = 36, p = 0.017). Drd1a/Pet1-

silenced mice (90.8 ± 25.5 s) also had a significantly shorter

average latency to attack than respective sibling controls

(171.9 ± 22.9 s, M-W U = 82.5, p = 0.046). Silencing either sub-

type failed to affect time spent tail rattling or number of pursuits.

These data show that theDrd1a/Pet1 andDrd2/Pet1 subtypes of

serotonergic neurons influence some, but not all, salient ele-

ments of rodent aggressive behaviors.

To rule out that the observed aggression phenotypes might

result from silencing a sufficiently large number of non-specific

serotonergic neurons, we quantified the cell population size of

each of the Pet1 neuron subsets tested in the resident-intruder

assay. We counted the number of GFP+ cells in the brains of

male mice generated by pairing RC::FrePe with Pet1::Flpe and

subtype-specific cre drivers. We found that the Drd1a/Pet1,

Crf/Pet1, and Egr2/Pet1 subsets were of comparable size with

2594 ± 333, 1918 ± 247, and 2052 ± 200 GFP+ cells per brain,

respectively (Figure 2G). The Drd2/Pet1 and r2HoxA2/Pet1 sub-

sets were significantly smaller with 616 ± 241 and 1016 ± 199

GFP+ cells per brain, respectively (one-way ANOVA, genotype
Figure 3. Behavioral Phenotyping of Drd1a/Pet1- and Drd2/Pet1-Silen

(A–D and A0–D0) Open field. Horizontal distance traveled during a 60min open field

Time spent in vertical exploration is shown in 5 min bins (C and C0) and as total v

(E, E0, F, and F0) Forced swim. Average time spent immobile during each minute

(G, G0, H, and H0) Three-chamber social interaction. (G and G0) Average time s

perforated cup) or investigating an empty perforated container during the three-c

with the stranger mouse binned into first and second halves of the assay is show

(I and I0) Water T-maze. The graphs plot the % of correct arm choices during ac

silenced (I0), and control mice.

(J and J0) Operant learning task. The graphs plot the number of unchained resp

phases for the Drd1a/Pet1-silenced (J), Drd2/Pet1-silenced (J0), and control mic

All values shown are mean ± SEM. Complete statistical measures are provided i
F(4,10) = 10.47, p = 0.001, Fisher’s least significant difference

[LSD], p < 0.05; Figure 2G). The aggression-relevant Drd2/Pet1

subset was the smallest serotonergic population tested, indi-

cating that the observed aggression phenotypes were not the

result of silencing a threshold number of non-specific seroto-

nergic neurons, but rather resulted from silencing distinct seroto-

nergic neuron subtypes.

Drd1a/Pet1 and Drd2/Pet1 Neurons Modulate Unique
Sets of Non-aggressive Behavior
We next investigated the broader role these neuron subtypes

play in regulation of motor and emotionally relevant behavior.

We quantified non-aggressive behaviors during the resident-

intruder assays and found that Drd1a/Pet1-silenced mice spent

significantly less time making ‘‘nose-to-nose’’ and ‘‘nose-to-

anogenital region’’ contacts with the intruder (Drd1a/Pet1-

silenced: 2.5 ± 0.7 s, control siblings: 7.2 ± 1.0 s [mean ±

SEM]; M-W U = 48, p = 0.002) and significantly more time

walking around the cage compared with control siblings

(Drd1a/Pet1-silenced: 110.7 ± 6.4 s, control siblings: 91.8 ±

3.4 s; M-W U = 67, p = 0.016). Drd1a/Pet1-silenced mice did

not differ significantly from controls in rearing, digging, or groom-

ing behaviors (Table S3). No changes in non-aggressive behav-

iors during the resident-intruder assay were detected in Drd2/

Pet1-silenced mice (Table S3).

Further, we subjected new cohorts of Drd1a/Pet1- and Drd2/

Pet1-silencedmice and their control littermates to behavioral as-

says assessing neurological functions, emotional responses, so-

cial behavior, and cognitive functions (Figures 3 and S5; Tables

S4 and S5). Although the Drd2/Pet1 subset is significantly

smaller in neuron number and more circumscribed anatomically

than the Drd1a/Pet1 subset, Drd2/Pet1 silencing affected a

wider range of behavioral outcomes.Drd1a/Pet1-silencedmales

demonstrated subtle, yet statistically significant, phenotypes in 2

of the 10 tests (open-field and social interaction tests; Figures

3A–3J), whereas Drd2/Pet1-silenced males showed a relatively

robust array of behavioral phenotypes in 4 of the 10 tests

(open-field, forced swim test, water T-maze, and operant

learning; Figures 3A0–3J0). See Tables S4 and S5 for statistical

analysis of behavioral assays. Both Drd1a/Pet1- and Drd2/

Pet1-silenced mice exhibited hyperactivity in novel environ-

ments, although the phenotype was more evident in the Drd2/

Pet1-silenced animals (Figures 3A–3D and 3A0–3D0). Drd2/

Pet1-silenced mice also demonstrated hyperactivity in the

forced swim test and hyperactivity or impulsivity in the water

T-maze and operant learning assays (Figures 3E0, 3F0, 3I0, and
ced Mice

assay is shown in 5min bins (A and A0) and as total distance traveled (B and B0).
ertical exploration time (D and D0).
of the forced swim test (E and E0) and the total time spent immobile (F and F0).
pent investigating the perforated container holding a stranger mouse (under

hamber social interaction assay. (H and H0) Average time spent at the container

n.

quisition and reversal learning phases for Drd1a/Pet1-silenced (I), Drd2/Pet1-

onses, lever presses in the absence of stimuli, during training, and extinction

e.

n Tables S4 (Drd1a/Pet1) and S5 (Drd2/Pet1).
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3J0). Drd1a/Pet1-silenced mice did not show phenotypes in

these assays, but spent significantly more time with the stranger

mouse in the social interaction test as compared with sibling

controls (Figures 3G and 3H). These results suggest that Drd2/

Pet1-silenced animals exhibit more persistent motor activity in

a novel environment, but not in the home cage, as well as poten-

tially impaired spatial learning ability. By contrast, Drd1a/Pet1-

silenced mice demonstrate only slight hyperactivity and

increased social preference.

Drd1a/Pet1 and Drd2/Pet1 Neuron Subtypes Differ in
Anatomical Distribution and Onset of Respective
Drd::cre Expression
We next examined Drd1a/Pet1 and Drd2/Pet1 neuron distribu-

tion across the serotonergic raphe. The DR (composed of nuclei

B7, B6, and B4 [Dahlstroem and Fuxe, 1964; Steinbusch, 1981],

with B4 here considered the caudal-most DR domain) can be

broken down into the ventromedial (vmDR), dorsomedial

(dmDR), and lateral wing regions (Hale and Lowry, 2011; Peyron

et al., 1995). In the adult brain, Drd1a/Pet1 neurons were de-

tected throughout raphe nuclei largely enriched along themidline

(Figures 4A–4E). By contrast, Drd2/Pet1 neurons localized to the

rostral-most DR (B7; Figures 4F–4J), especially the lateral wings

(Figures 4A and 4F), with few cells in the caudal DR,MR (B8), and

medullary raphe (B3, RMg).

Because intersectional reporter expression served as a proxy

for the onset of putative dopamine receptor gene and tox expres-

sion, we examined the ontogeny of GFP expression driven by

RC::FrePe. Pet1 and Pet1::Flpe expression begins in the newly

postmitotic precursor serotonin neurons around embryonic day

(E) 12.5 (Jensenetal., 2008;Scott et al., 2005),withDrdexpression

subsequently. We detected Drd1a/Pet1 GFP+ cells in late-gesta-

tion embryos (data not shown), with numerous marked cells by

post-natalday (P)0 (Figure4K)and increasingat laterages (Figures

4K–4O). By contrast, Drd2/Pet1 GFP+ neurons were observed

starting around P8, were consistently detectable by P15, and

increased in number between P30 and adulthood (Figures 4P–

4T). Thus, although a considerable number ofDrd1a/Pet1 neurons

demonstratedCreactivityembryonically,mostDrd2/Pet1neurons

showed Cre activity (and thus GFP and tox expression) only later

during post-natal development (i.e., P8 and later).
Figure 4. Reporter Labeling of Intersectional and Subtractive Serotoni

Intersectional Drd1a/Pet1 and Drd2/Pet1 neurons express GFP, whereas the sub

by the intersectional reporter RC::FrePe.

(A–C) Images show Drd1a/Pet1GFP+ and Pet1-only mCherry+ neurons from regio

shows in white Drd1a/Pet1 neurons, and the right half shows both Drd1a/Pet (gr

aqueduct. Scale bars, 50 mm.

(D and E) Drawing (D) illustrates the brain section from which the RMg was imag

(F–H) Images showDrd2/Pet1GFP+ andPet1-only mCherry+ neurons from region

in white only the Drd2/Pet1 neurons, and the right half shows both Drd2/Pet1 an

(I and J) Drawing (I) illustrates the brain section from which the RMg was imaged

(K–N) Images show Drd1a/Pet1 GFP+ neurons within the DR of mice at P0 (K),

mCherry.

(O) Average number (mean ± SEM) of GFP+ Drd1a/Pet1 neurons within the DR a

(P–S) Images show Drd2/Pet1 GFP+ neurons within the DR of mice at P0 (P), P8

mCherry.

(T) Average number (mean ± SEM) of GFP+ Drd2/Pet1 neurons within the DR at

dm, dorsomedial; lw, lateral wings; vm, ventromedial.
Drd2/Pet1 Neurons Express Functional D2 Receptors
To determine whether dopamine receptor genes are indeed ex-

pressed in the adult Drd1a/Pet1 and Drd2/Pet1 cell populations,

we manually sorted fluorescently labeled cells (Hempel et al.,

2007) from the DR of adult triple-transgenic mice. RNA was ex-

tracted from single cells and, in the case of Drd1a/Pet1 mice, a

pooled cell sample (�30 cells). The presence of endogenous

Drd1a and Drd2 transcripts as well as select pan-serotonergic

marker genes was assessed using qRT-PCR and/or RNA

sequencing (RNA-seq).

Using RNA-seq, we readily detected Drd2 transcripts in 17 of

17 cells, with 16 of 17 having a counts per million read (CPM; An-

ders et al., 2013) greater than 1, a commonly applied detection

threshold (Figure 5A). To determine whether the Drd2::cre driver

was capturing near all Drd2-expressing 5-HT neurons, we also

measured gene expression in eightmCherry+Pet1-only neurons.

Three of eight Pet1-only cells had a Drd2 CPM > 1, only one of

which was above the lower quartile range of Drd2 transcript

expression levels in Drd2/Pet1 GFP+ cells (Figure 5A). Applying

a generalized linear model likelihood ratio test using edgeR (An-

ders et al., 2013), we confirmed that transcript counts were

significantly greater in the Drd2/Pet1 sample group than in the

Pet1-only group (p = 0.03) by a factor of 6. By contrast, select

5-HT marker transcripts including tryptophan hydroxylase 2

(Tph2), serotonin transporter (Slc6a4, also referred to as Sert),

and Pet1 were detected in all GFP+ and mCherry+ neurons by

RNA-seq (Figures 5B and 5C). Together, these data indicate

that the Drd2/Pet1 neurons are bona fide serotonergic neurons

that express endogenous Drd2 transcripts. Transcripts for

Drd1a, Drd3, Drd4, and Drd5 were not detected in Drd2/Pet1

GFP+ neurons by RNA-seq (data not shown). Our data further

show that the fewPet1-only neurons that harborDrd2 transcripts

do so at significantly lower levels (close to the detection limit by

RNA-seq), suggesting there may be a critical threshold of Drd2

transcriptional activity to effectively drive the Drd2::cre trans-

gene and perhaps to drive functionally meaningful levels of

Drd2 receptor protein.

We next examined whether Drd2/Pet1 neurons contained

functional Drd2 receptors. We obtained whole-cell electrophys-

iological recordings from Drd2/Pet1 (GFP+) and Pet1-only

(mCherry+) neurons. In voltage clamp recordings from GFP+
n Neuron Populations

tractive population of 5-HT neurons (Pet1-only) expresses mCherry, as labeled

ns of the DR (A) and MR (C) as diagrammed in (B). (A) The left side of the image

een) and Pet1-only (red) neurons. (A and F) White line delineates the cerebral

ed (E). White line delineates ventral brain surface.

s of the DR (F) andMR (H) as diagrammed in (G). (F) Left side of the image shows

d Pet1 neurons. White line delineates cerebral aqueduct.

(J). White line delineates the ventral brain surface.

P8 (L), P15 (M), and P30 (N). Insets show same region labeled with GFP and

t P8, P15, P30, and adult (>P90).

(Q), P15 (R), and P30 (S). Insets show the same region labeled with GFP and

P8, P15, P30, and adult (>P90).
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Figure 5. Validation of Dopamine Receptor Expression and Function

(A) Counts per million reads (CPM) for Drd2 as measured using RNA-seq in Drd2/Pet1 and Pet1-only neurons. Boxplots show the median (open square), upper

and lower quartiles (box), non-outlier minimum/maximum (whiskers), and outliers (filled square). The associated raw data (green and red dots) are shown to the

right of the boxplots.

(B) Boxplots show summaries and raw data of RNA-seq CPMs for three serotonergicmarker genes expressed by theDrd2/Pet1 neurons shown in (A): tryptophan

hydroxylase 2 (Tph2), 5-HT transporter (Slc6a4), and Pet1.

(C) Boxplots show summaries and raw data of RNA-seq CPMs for Tph2, Slc6a4, and Pet1 expressed by the Pet1-only neurons shown in (A).

(D) An example trace from a GFP+Drd2/Pet1 neuron shows outward positive current elicited by bath application of 100 mMquinpirole, a D2-like receptor agonist.

The line indicates when quinpirole was added to artificial cerebrospinal fluid (ACSF) reservoir, and the arrow indicates beginning of the response.

(E) Schematic illustrates ramp protocol employed before and after drug exposure to further explore the pharmacological responses to quinpirole and dopamine.

From the holding potential of �60 mV, the membrane potential was dropped to �100 mV, raised over the course of 1 min to �30 mV, and then stepped back

to �60 mV. To isolate drug-induced current, pre-drug ramps were subtracted from post-drug ramps.

(F) Shown are average current responses to 10 mM quinpirole for GFP+ Drd2/Pet1 (n = 8) and mCherry+ Pet1-only (n = 5) neurons.

(G) Average current responses (Post�Pre) are shown for dopamine alone (light) and dopamine (30 mM) in the presence of the D2-like receptor antagonist sulpiride

(1 mM, dark) for Drd2/Pet1 neurons (n = 4).

(H) Average current responses (Post � Pre) are shown for dopamine (30 mM) alone (light) versus in the presence of sulpiride (1 mM, dark) for mCherry+ Pet1-only

neurons (n = 4).
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Drd2/Pet1 neurons, bath application of the D2 receptor agonist

quinpirole (100 mM), which targets Drd2, Drd3, and Drd4,

induced a small outward positive current (5.4 ± 2.3 pA, one-sam-

ple t test against H0 = 0, n = 13, t = 2.38, p = 0.034; Figure 5D).

Because recordings were carried out in the presence of gluta-

mate and GABAA receptor antagonists and a blocker of

voltage-gated sodium channels, the data suggest that the

change in current observed was a direct response.

We next examined current change in response to a voltage

ramp (�100 to �30 mV over 1 min; Figure 5E), before and after

drug application for both GFP+ Drd2/Pet1 (n = 8) and mCherry+

Pet1-only (n = 5) neurons. The drug-specific response was

calculated by subtracting pre- from post-drug ramp-induced

current. GFP+ Drd2/Pet1 neurons, but not mCherry+ Pet1-

only neurons, demonstrated a voltage-dependent response to

administration of 10 mM quinpirole: at low voltages, GFP+

neurons showed a positive inward (excitatory) current, whereas

at voltages greater than ��65 mV, they showed a positive out-

ward (inhibitory) current (Figure 5F). The nature of the quinpir-

ole-induced GFP+ neuron response suggests the activation of

a G-protein-coupled inwardly rectifying potassium channel

(GIRK; Lesage et al., 1994; Sahlholm et al., 2008).

Administration of 30 mM dopamine recapitulated the quinpir-

ole-induced response in GFP+ Drd2/Pet1 (Figure 5G), but not

mCherry+ Pet1-only neurons (Figure 5H). This current response

in GFP+ neurons was blocked by the D2 antagonist sulpiride

(1 mM), which abrogated the positive outward current at depola-

rizing membrane potentials, indicating that the GIRK-like

response was mediated by D2 receptors. These data indicate

that Drd2/Pet1 neurons express functional D2 receptors, which

mediate an inhibitory effect on this neuronal subtype. The low

levels of Drd2 transcript detected in some mCherry+ Pet1-only

neurons is likely insufficient to drive functional protein expres-

sion. Interestingly, in both GFP+ and mCherry+ neurons, a

positive inward current persisted in the presence of dopamine

and sulpiride, suggesting that dopamine also had an excitatory

effect (direct or indirect) on serotonergic neurons that was D2

independent.

In contrast with Drd2/Pet1 neurons, Drd1a expression in

Drd1a/Pet1GFP-marked neurons was ambiguous. We analyzed

23 individual GFP+ Drd1a/Pet1 cells derived from three adult
Figure 6. Axonal Projection Patterns of Drd1a/Pet1 and Drd2/Pet1 Neu

(A) TheROSA26/CAG knockin allele, RC::FPSit, allows for visualization of subtype

(B–E) Some areas, such as the nucleus accumbens (NAc) shell, were innervate

illustrates the coronal section from which photomicrographs were taken for Drd1

staining are shown. Center panel (C0) shows thresholded GFP+ axonal terminals

covered by GFP+ staining (average % target area with projections). Scale bar, 50

(F–I) A few regions were innervated by both subtypes as in the ventral tegmental ar

Drd1a/Pet1 (G) and Drd2/Pet1 (H) mice demonstrate GFP+ puncta in the VTA of b

Quantification of the area covered by GFP+ staining is shown in (I).

(J–M) Other regions were innervated only by the Drd2/Pet1 population as in the

Representative images from Drd1a/Pet1 (K) and Drd2/Pet1 (L and L0) mice de

Quantification of the area covered by GFP+ staining is shown in (M).

(N) The binned level of innervation for the 28 brain regions analyzed in Drd1a/

coverage), light (weak innervation, 0.005%–0.03% coverage), or dark (strong

Figure S4.

(O) In a sagittal representation, the densest areas of innervation and areas of co

shades) neuron subtypes. As in (N), light shades represent modest innervation, a
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Drd1a::cre, Pet1::Flpe, RC::FrePe animals (Table S6), as well

as a pool of �30 GFP+ cells from a fourth animal. qRT-PCR

and RNA-seq revealed Drd1a transcript in the pooled sample,

but not the single cells. Most samples also expressed Tph2,

Sert, and Pet1. These data suggest that eitherDrd1awas not ex-

pressed byGFP+Drd1a/Pet1 cells in adult animals (or expressed

in only a very small number of cells) or expression levels were

below our detection limit.

Because Drd1a/Pet1 GFP+ neurons are observed perinatally,

we examined Drd1a transcript levels in single Drd1a/Pet1 neu-

rons from P4 (n = 4) and P10 (n = 8) pups (Table S7). Reads for

Drd1a were observed in one of four cells at P4 and four of eight

cells at P10, but only two of the P10 cells had CPM > 1. All 12

cells expressed Tph2, Sert, and Pet1. It is possible that some

DR serotonergic neurons marked by the Drd1a::cre driver reflect

ectopic transgene expression; however, because GFP serves as

a permanent lineage tracer, Drd1a could be expressed largely

transiently during development and downregulated by adult-

hood, as supported by our increased single-cell Drd1 transcript

detection frequency at earlier ages.

Low levels of Drd2 transcript were detected in 8 of the 35

Drd1a/Pet1 neurons assayed across all ages (Tables S6 and

S7), suggesting that there may be some overlap between the

two serotonergic neuronal lineages during adulthood, and that

this sub-subtype may contribute to the shared behavioral phe-

notypes observed in our neurotransmission silencing experi-

ments. We thus further explored and compared other aspects

of cell phenotype between the two lineage-marked populations

that might indicate shared versus divergent mechanisms of

behavioral regulation, specifically axonal projection patterns.

Drd1a/Pet1 and Drd2/Pet1 Neuron Subtypes Exhibit
Unique Axonal Bouton Distribution Profiles
Wemapped axonal projections of theDrd1a/Pet1 andDrd2/Pet1

neuron subtypes, using our engineered ROSA26 knockin inter-

sectional allele, RC::FPSit (Figure 6A), which labels axonal bou-

tons (terminal and en passant) of a given neuron subtype with the

presynaptic marker synaptophysin-GFP (Li et al., 2010). Some

brain regions were innervated only by the Drd1a/Pet1 subtype

(Figures 6B–6E), some by both subtypes (Figures 6F–6I), and

others only by the Drd2/Pet1 subtype (Figures 6J–6M).
rons

-specific axonal terminals with intersectionally expressed synaptophysin-GFP.

d by Drd1a/Pet1 neurons, but not the Drd2/Pet1 population. Schematic (B)

a/Pet1 (C) and Drd2/Pet1 (D) mice. In each image, GFP (green) and DAPI (blue)

from the Drd1a/Pet1 subtype, whereas (E) shows quantification of the area

mM.

ea (VTA). Schematic (F) indicates region analyzed. Representative images from

oth genotypes, as is depicted in the respective thresholded images (G0 and H0).

superior olivary complex (SO). Schematic (J) indicates the region analyzed.

monstrate GFP+ puncta in the SO of Drd2/Pet1, but not Drd1a/Pet1, mice.

Pet1 and Drd2/Pet1 brains is indicated with white (no innervation, <0.005%

innervation, >0.03% coverage) shading. Actual percentages are provided in

-innervation are shown for the Drd1a/Pet1 (red shades) and Drd2/Pet1 (blue

nd dark shades represent dense innervation.



Apparent in adult (P90) brains from male triple-transgenic

Drd1a::cre, Pet1::Flpe, RC::FPSit or Drd2::cre, Pet1::Flpe,

RC::FPSit animals was that both subsets innervated numerous

brain targets despite their small population size (Figures 6N,

6O, and S6). Based on a qualitative examination of innervation

patterns, we chose for quantitative analyses 28 brain regions en-

compassing domains innervated by either the Drd1a/Pet1 and/

or Drd2/Pet1 subtypes. We developed a largely automated im-

aging workflow that allowed for objective quantitative compari-

son of innervation density across different brains regions. Based

on this output (Figure S6), we binned the analyzed target areas

into categories of strong, medium, and weak-to-no-innervation

(Figure 6N). We found that Drd1a/Pet1 neurons projected

strongly to forebrain nuclei, many of which are part of aggression

circuits (Figures 6B–6I, 6N, 6O, and S6). By contrast, Drd2/Pet1

neurons most prominently innervated more caudal brain areas,

especially areas known to be involved in sensory (largely audi-

tory) processing (Figures 6L, 6M, 6N, 6O, and S6). Some areas

were co-innervated by Drd1a/Pet1 and Drd2/Pet1 (Figures 6F–

6I, 6N, 6O, and S6).

DISCUSSION

Here we report discovery of twomolecularly defined subtypes of

serotonergic neurons, each critical for shaping aggressive social

interactions in the mouse. One Pet1 serotonergic cell subtype is

distinguished by Drd2::cre driver activity from pre-adolescence

onward and endogenous Drd2 expression, and the other by

Drd1a::cre activity perinatally with detectable endogenous

Drd1a transcript in some, but not all, reporter-marked cells.

Silencing of other subsets of serotonergic neurons, some of

larger population size, did not affect aggressive behavior, indi-

cating that constitutive silencing only of specific subtypes of se-

rotonin neurons is sufficient to escalate adult male aggression.

The Drd2/Pet1 and Drd1a/Pet1 subtypes are composed of

remarkably few neurons, yet their axonal projections reach a

broad range of targets. Differences between these subtypes in

anatomical distribution, molecular expression, temporal onset

of BAC-driven Cre activity, and projection profile suggest that

they may modulate aggression through distinct mechanisms.

Collectively, this work reveals the existence of molecularly,

hodologically, and developmentally distinct subtypes of seroto-

nergic neurons that are uniquely capable of influencing inter-

male aggression.

Functional and Anatomical Differences between
Aggression-Modulating 5-HT Neuron Subtypes
Silencing either the Drd1a/Pet1 or the Drd2/Pet1 subset of

serotonergic neurons resulted in increased displays of aggres-

sive behaviors in adult male mice, suggesting a model in which

vesicular neurotransmission from these specific neuron sub-

types, either during development and/or adulthood, is required

to achieve normative, tempered levels of aggression in the

adult.

Silencing of the Drd2/Pet1 subtype further resulted in some

form of hyper-arousal induced by novel or stressful environ-

ments. Because overall home cage activity measurement was

unchanged, a generic motor phenotype is unlikely. By contrast,
the Drd1a/Pet1-silenced animals displayed a phenotype in the

social interaction assay, which may implicate the Drd1a/Pet1

subtype in the regulation of social behaviors more generally.

These differences in behavioral phenotypes may reflect distinc-

tions observed between the two subtypes in anatomy, dopamine

receptor gene expression, and projection targets.

We found that the two subtypes share some anatomical do-

mains (largely the rostral dorsal DR), but largely differ in distri-

bution within the raphe. The developmental onset of the

respective Drd::cre drivers also differed between the Drd1a/

Pet1 and Drd2/Pet1 subtypes. These findings suggest that

although tox-mediated silencing is constitutive, its onset

differed between the subtypes. While Drd1a/Pet1 neuron

labeling/silencing commenced embryonically, that for Drd2/

Pet1 neurons began at adolescence. Adolescence in mice

is associated with functional changes in DR serotonin neu-

rons and has been identified as a sensitive period for 5-HT-

mediated modulation of emotional behavior in mice (Gross

et al., 2002; Yu et al., 2014; Liu et al., 2010; Rood et al.,

2014). From our present data, we can deduce that embryonic

or early post-natal silencing of the Drd2/Pet1 neurons is not

necessary to induce behavioral phenotypes, but rather that

subtype-specific neuronal silencing during later post-natal pe-

riods is sufficient.

Despite these differences, we observed some overlap be-

tween the subtypes, suggesting that the shared aggression

phenotype upon neuronal silencing could stem from a neuronal

sub-subtype denoted by a history of expression of Pet1/

Drd1a/Drd2. However, the extent of these shared features

was limited: Drd2 transcript levels in Drd1a/Pet1 cells are lower

than those in Drd2/Pet1 cells proper, while the shared anatom-

ical and hodological properties are also a limited minority.

Probing these Pet1/Drd1a/Drd2low cells for a role in aggression

modulation requires new tools with even greater cell subtype

resolution.

Projection Targets of Aggression-Relevant Drd1a/Pet1

and Drd2/Pet1 Serotonergic Neurons
We developed a dual-recombinase allele, RC::FPSit, coding for

a synaptophysin-GFP fusion protein enabling bouton visualiza-

tion and thus enhancing subtype innervation mapping. Several

of the innervated brain regions have documented roles in modu-

lating aggressive behavior (Nelson and Trainor, 2007) or contain

dopaminergic neuron cell bodies. Drd1a/Pet1 neurons mostly

innervated rostral brain structures known to constitute aggres-

sion circuits, whereas Drd2/Pet1 projection targets showed a

surprising caudal bias. The majority were centers associated

with auditory processing. Notably, some human disorders asso-

ciated with 5-HT dysregulation involve sound hypersensitivity or

aberrant auditory processing (Kähkönen et al., 2007; Lucker and

Doman, 2012; Wyss et al., 2013). Thus, the behavioral pheno-

types in the Drd2/Pet1-silenced animals could be related to

altered sensory processing. Importantly, Drd2/Pet1-silenced

mice exhibited a normal startle reflex, suggesting that hearing

is not overtly impaired. Overall, projection targets of the Drd1a/

Pet1 and Drd2/Pet1 neuron subtypes differ considerably,

possibly reflecting distinct circuits through which each subset in-

fluences behavior.
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Figure 7. Summary of Findings within an

RDoC-like Matrix

Chart summarizes findings within context of the

NIMH RDoC matrix. Characteristics of the Drd1a/

Pet1 and Drd2/Pet1 neuronal subtypes are sub-

divided among six of the RDoC ‘‘units of analysis’’

including genes, molecules, cells, circuits (inner-

vation), behavior, and (electro)physiology. Sche-

matics illustrate a subset of the key findings. From

left to right: ‘‘Cells’’ illustrates the differential

anatomical distribution of the Drd/Pet1 subtypes

and the Pet1-only 5-HT neurons in the DR.

Dopaminergic fibers innervate the rostral DR

(Kalén et al., 1988), where both Drd/Pet1 and

Pet1-only 5-HT neurons reside. ‘‘Behavior’’ shows

that suppressed release of neurotransmitter

(green diamonds) from either of the Drd/Pet1

subtypes enhances aggression. ‘‘Electrophysi-

ology’’ depicts the dopamine (blue circles)-

induced inhibitory current (black arrow) mediated

by D2 dopamine receptors (blue half circle) spe-

cifically in Drd2/Pet1 neurons. The inhibitory cur-

rent would counteract other excitatory currents

(orange arrow) within the cell. Molecular genetic

tools have facilitated relating ‘‘Cells’’ and

‘‘Behavior’’ findings (solid arrow), while it remains

to be demonstrated that the Drd2-mediated

inhibitory current in Drd2/Pet1 5-HT neurons in-

fluences aggressive behavior (dotted arrow).
Both the Drd1a/Pet1 and the Drd2/Pet1 subtypes send dense

projections to the dopaminergic midbrain nuclei, namely the

ventral tegmental area (VTA) and the substantia nigra pars com-

pacta (SNc). Such a pattern suggests reciprocal circuitry,

wherein midbrain dopaminergic neurons send projections to

the rostral serotonergic system and vice versa (Niederkofler

et al., 2015). Sources of dopaminergic innervation of the Drd/

Pet1 subtypes may include the rostral DR in addition to the

SNc and midbrain VTA. Whereas the midbrain VTA dopami-

nergic neurons have been shown to directly impact aggressive

behaviors (Yu et al., 2014), the rostral DR dopaminergic neurons

have recently been shown to influence the subjective experience

of social isolation (Matthews et al., 2016). It remains to be defin-

itively demonstrated, however, whether dopamine-mediated

regulation of serotonergic neurons influences serotonin-medi-

ated modulation of aggressive behaviors.

Electrophysiology Suggests that Dopamine
Differentially Influences Drd2/Pet1 Neurons and
Pet1-Only DR Serotonergic Neurons
Gene expression analysis and electrophysiology studies provide

evidence for a direct effect of dopamine on subsets of seroto-

nergic neurons that we have identified as shaping aggression.

Transcriptional profiling of Drd2/Pet1 neurons from adult

animals confirmed the presence of Drd2 transcript in nearly all
1946 Cell Reports 17, 1934–1949, November 15, 2016
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cells analyzed, while electrophysiological

studies further revealed that Drd2/Pet1

neurons show a distinct functional

response to dopamine as compared

with Pet1-only neurons. Future studi
will investigate the causal relationship between dopamin

induced inhibition of Drd2/Pet1 neurons and aggression.

Multiscale Analysis of Inter-male Rodent Aggression
We investigated the neural correlates of aggression acro

multiple ‘‘units of analysis’’ as summarized in Figure 7 using

framework resembling the NIMH’s RDoC (https://www.nim

nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtm

We identified two subtypes of serotonergic neurons (‘‘cells

each distinguished by the expression of either the Drd1a

Drd2 marker genes along with serotonergic defining gen

such as Tph2, Pet1, and Slc6a4 (marker ‘‘genes’’; Figure

We showed that silencing either of these neuronal subtyp

enhanced aggressive behavior in adulthood (‘‘behavior

Further, we demonstrated that these serotonergic subtyp

project to specific brain regions and reside in a region of t

DR that receives dopaminergic innervation (the foundation f

‘‘circuitry’’ analyses). Our electrophysiological studies in tu

demonstrate that, although dopamine has an excitatory effe

on most serotonergic neurons, Drd2 expressed in the Drd

Pet1 neurons mediates an inhibitory current, which dampe

the excitatory state of the cell (‘‘physiology’’). By consideri

neuronal subtypes underlying aggression at multiple biologic

levels, we are able to identify several points where furth

experimental investigation might: (1) elucidate substrates f

https://www.nimh.nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtml
https://www.nimh.nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtml


pharmacological treatments to temper impulsive aggression,

and (2) further our understanding of how neuronal populations

in the brain affect the generation and modulation of complex

behaviors.
EXPERIMENTAL PROCEDURES

Detailed methods are provided in the Supplemental Experimental Procedures.

Mouse Lines

Procedures were in accord with institutional animal care and use committee

policies at Harvard Medical School. Transgenics Pet1::Flpe (Jensen et al.,

2008) and ePet::cre (Scott et al., 2005) were used to access serotonergic

neurons. Transgenics Drd1a::cre (Gong et al., 2007), Drd2::cre (Gong et al.,

2007), Crf::cre (https://www.mmrrc.org/catalog/sds.php?mmrrc_id=30850),

and (Rse2)HoxA2::cre (Awatramani et al., 2003) and knockin transgene

Egr2::cre (Egr2Cki) (Voiculescu et al., 2000; Gong et al., 2007) targeted subsets

of serotonergic cells when used intersectionally with Pet1::Flpe. Transgenics

were backcrossed onto C57BL/6J for more than nine generations, with the

exception of Crf::cre, which were a mixture of FVB/N, ICR, and C57BL/6

(https://www.mmrrc.org/catalog/sds.php?mmrrc_id=30850).

Recombinase lines were crossed to reporter or effector lines including

RC::FrePe (Bang et al., 2012; Engleka et al., 2012) and its derivate RC::rePe

(Cre-dependent only) (Ray et al., 2011), which encode a GFP reporter;

RC::PFtox (Kim et al., 2009) and its derivate RC::Ptox (Cre-dependent only),

which encode a tetanus toxin light chain-GFP fusion; and RC::FPSit encoding

a synaptophysin-GFP fusion.

Resident-Intruder Assay

Species-typical aggression was studied using a resident-intruder (R-I) assay

similar to previous reports (Miczek and O’Donnell, 1978; Fish et al., 1999). After

weaning, transgenic male mice, ‘‘residents,’’ were group-housed with male

siblings until sexual maturity (�P55), when each resident was pair-housed

with a female and sired pups. After 3.5–4 weeks, resident males were assayed

for aggression toward a wild-type (CFW; Charles River) intruder mouse over

the course of multiple trials until aggression stabilized, defined as the trial in

which the average number of attack bites demonstrated by a single resident

was within 20% variability of the previous three trials.

Behavioral Phenotyping

Except for R-I assays, all behavioral experiments were performed in the

Harvard NeuroDiscovery Center following a two-week acclimation period,

conducted in the order described in the Supplemental Experimental

Procedures and involving mice 2–4.5 months of age at the beginning of the

analysis.

Immunohistochemistry

Immunohistochemistry was used to assess localization and effectiveness of

tetanus toxin light chain, anatomical distribution of targeted subsets of seroto-

nin neurons, and projection patterns of targeted cell populations. Primary

antibodies employed were chick anti-GFP (ab13970-100; Abcam) or rabbit

anti-GFP (gift from Devreotes Lab), rabbit anti-dsRed to detect mCherry

(632496; Clontech), goat anti-serotonin (ab66047; Abcam), and rabbit anti-

Vamp2 (104202; Synaptic Systems).

Electrophysiology

Whole cell patch techniques were applied to fluorescently labeled neurons in

mouse brain slices. Voltage clamp recordings were acquired from Drd2/Pet1

(GFP+) and Pet1-only (mCherry+) neurons in the DR, and responses to dopa-

mine (30 mM; Sigma), quinpirole (10–100 mM, D2-selective agonist; Sigma),

or sulpiride (1 mM, D2-selective antagonist; Sigma) were measured. Current

response to a voltage ramp from �100 to �30 mV over the course of

�1 min was used to extrapolate information about dopamine-induced cur-

rents. Details are provided in the Supplemental Experimental Procedures.
Gene Expression

Cell Sorting

Gene expression for select transcripts was assessed in a pooled sample (�30

cells) and single-cell samples for GFP+ Drd1a/Pet1 neurons, and single-cell

samples fromGFP+Drd2/Pet1 andmCherry+ (Drd2�)/Pet1 cells. As previously

described (Hempel et al., 2007; Okaty et al., 2015), cells were isolated via pro-

tease treatment and physical dissociation by pipette trituration of DR brain tis-

sue; individual neurons identified by fluorescent phenotype were collected by

micropipette.

RNA Preparation

RNA was collected using a PicoPure RNA Isolation Kit (Arcturus), reverse tran-

scribed to cDNA, and linearly amplified using the Ovation RNA-seq System V2

kit (Nugen).

RNA Sequencing

cDNA samples were sonicated (Covaris), integrated into RNA-seq libraries

using the Ovation Ultralow DR Multiplex System 1-8 Kit (Nugen), quality

controlled using TapeStation and qPCR, and sequenced using the Illumina

HiSeq 2500 RNA-seq platform at the Harvard Biopolymers Facility.

Statistical Analyses

Behavior data were analyzed using statistical packages including Prism

GraphPad, StatView 5.0 software (SAS Institute), Excel 2010, and Statistica

(Dell). Statistical tests performed are givenwith relevant results with the excep-

tion of behavioral phenotyping data, which is included in Tables S4 and S5.

Electrophysiology data were analyzed with Clampfit 9.2 software (Axon Instru-

ments). Transcript sequence data were analyzed using edgeR (Anders et al.,

2013; Okaty et al., 2015; Robinson et al., 2010).
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The accession number for the sequencing data reported in this paper is GEO:
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