881 research outputs found
Recommended from our members
How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35)
We perform observing system simulation experiments (OSSEs) with the GEOS-Chem adjoint model to test how well methane emissions over North America can be resolved using measurements from the TROPOspheric Monitoring Instrument (TROPOMI) and similar high-resolution satellite sensors. We focus analysis on the impacts of (i) spatial errors in the prior emissions and (ii) model transport errors. Along with a standard scale factor (SF) optimization we conduct a set of inversions using alternative formalisms that aim to overcome limitations in the SF-based approach that arise for missing sources. We show that 4D-Var analysis of the TROPOMI data can improve monthly emission estimates at 25 km even with a spatially biased prior or model transport errors (42 %–93 % domain-wide bias reduction; R increases from 0.51 up to 0.73). However, when both errors are present, no single inversion framework can successfully improve both the overall bias and spatial distribution of fluxes relative to the prior on the 25 km model grid. In that case, the ensemble-mean optimized fluxes have a domain-wide bias of 77 Gg d−1 (comparable to that in the prior), with spurious source adjustments compensating for the transport errors. Increasing observational coverage through longer-timeframe inversions does not significantly change this picture. An inversion formalism that optimizes emission enhancements rather than scale factors exhibits the best performance for identifying missing sources, while an approach combining a uniform background emission with the prior inventory yields the best performance in terms of overall spatial fidelity – even in the presence of model transport errors. However, the standard SF optimization outperforms both of these for the magnitude of the domain-wide flux. For the common scenario in which prior errors are non-random, approximate posterior error reduction calculations (derived via gradient-based randomization) for the inversions reflect the sensitivity to observations but have no spatial correlation with the actual emission improvements. This demonstrates that such information content analysis can be used for general observing system characterization but does not describe the spatial accuracy of the posterior emissions or of the actual emission improvements. Findings here highlight the need for careful evaluation of potential missing sources in prior emission datasets and for robust accounting of model transport errors in inverse analyses of the methane budget.
</div
Recommended from our members
Direct retrieval of isoprene from satellite-based infrared measurements.
Isoprene is the atmosphere's most important non-methane organic compound, with key impacts on atmospheric oxidation, ozone, and organic aerosols. In-situ isoprene measurements are sparse, and satellite-based constraints have employed an indirect approach using its oxidation product formaldehyde, which is affected by non-isoprene sources plus uncertainty and spatial smearing in the isoprene-formaldehyde relationship. Direct global isoprene measurements are therefore needed to better understand its sources, sinks, and atmospheric impacts. Here we show that the isoprene spectral signatures are detectable from space using the satellite-borne Cross-track Infrared Sounder (CrIS), develop a full-physics retrieval methodology for quantifying isoprene abundances from these spectral features, and apply the algorithm to CrIS measurements over Amazonia. The results are consistent with model output and in-situ data, and establish the feasibility of direct global space-based isoprene measurements. Finally, we demonstrate the potential for combining space-based measurements of isoprene and formaldehyde to constrain atmospheric oxidation over isoprene source regions
Recommended from our members
Spatial Distribution of Isoprene Emissions from North America Derived from Dormaldehyde Column Measurements by the OMI Satellite Sensor
Space-borne formaldehyde (HCHO) column measurements from the Ozone Monitoring Instrument (OMI), with 13 × 24 km2 nadir footprint and daily global coverage, provide new constraints on the spatial distribution of biogenic isoprene emission from North America. OMI HCHO columns for June-August 2006 are consistent with measurements from the earlier GOME satellite sensor (1996–2001) but OMI is 2–14% lower. The spatial distribution of OMI HCHO columns follows that of isoprene emission; anthropogenic hydrocarbon emissions are undetectable except in Houston. We develop updated relationships between HCHO columns and isoprene emission from a chemical transport model (GEOS-Chem), and use these to infer top-down constraints on isoprene emissions from the OMI data. We compare the OMI-derived emissions to a state-of-science bottom-up isoprene emission inventory (MEGAN) driven by two land cover databases, and use the results to optimize the MEGAN emission factors (EFs) for broadleaf trees (the main isoprene source). The OMI-derived isoprene emissions in North America (June–August 2006) with 1° × 1° resolution are spatially consistent with MEGAN (R2 = 0.48–0.68) but are lower (by 4–25% on average). MEGAN overestimates emissions in the Ozarks and the Upper South. A better fit to OMI (R2 = 0.73) is obtained in MEGAN by using a uniform isoprene EF from broadleaf trees rather than variable EFs. Thus MEGAN may overestimate emissions in areas where it specifies particularly high EFs. Within-canopy isoprene oxidation may also lead to significant differences between the effective isoprene emission to the atmosphere seen by OMI and the actual isoprene emission determined by MEGAN.Earth and Planetary SciencesEngineering and Applied Science
Recommended from our members
Formaldehyde Distribution over North America: Implications for Satellite Retrievals of Formaldehyde Columns and Isoprene Emission
Formaldehyde (HCHO) columns measured from space provide constraints on emissions of volatile organic compounds (VOCs). Quantitative interpretation requires characterization of errors in HCHO column retrievals and relating these columns to VOC emissions. Retrieval error is mainly in the air mass factor (AMF) which relates fitted backscattered radiances to vertical columns and requires external information on HCHO, aerosols, and clouds. Here we use aircraft data collected over North America and the Atlantic to determine the local relationships between HCHO columns and VOC emissions, calculate AMFs for HCHO retrievals, assess the errors in deriving AMFs with a chemical transport model (GEOS-Chem), and draw conclusions regarding space-based mapping of VOC emissions. We show that isoprene drives observed HCHO column variability over North America; HCHO column data from space can thus be used effectively as a proxy for isoprene emission. From observed HCHO and isoprene profiles we find an HCHO molar yield from isoprene oxidation of 1.6 ± 0.5, consistent with current chemical mechanisms. Clouds are the primary error source in the AMF calculation; errors in the HCHO vertical profile and aerosols have comparatively little effect. The mean bias and 1σ uncertainty in the GEOS-Chem AMF calculation increase from <1% and 15% for clear skies to 17% and 24% for half-cloudy scenes. With fitting errors, this gives an overall 1σ error in HCHO satellite measurements of 25–31%. Retrieval errors, combined with uncertainties in the HCHO yield from isoprene oxidation, result in a 40% (1σ) error in inferring isoprene emissions from HCHO satellite measurements.Earth and Planetary SciencesEngineering and Applied Science
Sources of Carbon Monoxide and Formaldehyde in North America Determined from High-Resolution Atmospheric Data
We analyze the North American budget for carbon monoxide using data for CO and formaldehyde concentrations from tall towers and aircraft in a model-data assimilation framework. The Stochastic Time-Inverted Lagrangian Transport model for CO (STILT-CO) determines local to regional-scale CO contributions associated with production from fossil fuel combustion, biomass burning, and oxidation of volatile organic compounds (VOCs) using an ensemble of Lagrangian particles driven by high resolution assimilated meteorology. In many cases, the model demonstrates high fidelity simulations of hourly surface data from tall towers and point measurements from aircraft, with somewhat less satisfactory performance in coastal regions and when CO from large biomass fires in Alaska and the Yukon Territory influence the continental US.
Inversions of STILT-CO simulations for CO and formaldehyde show that current inventories of CO emissions from fossil fuel combustion are significantly too high, by almost a factor of three in summer and a factor two in early spring, consistent with recent analyses of data from the INTEX-A aircraft program. Formaldehyde data help to show that sources of CO from oxidation of CH4 and other VOCs represent the dominant sources of CO over North America in summer.Earth and Planetary Science
Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement‐model comparisons
A tunable diode laser absorption spectrometer (TDLAS) was operated on the NASA DC‐8 aircraft during the summer INTEX‐NA study to acquire ambient formaldehyde (CH2O) measurements over North America and the North Atlantic Ocean from ∼0.2 km to ∼12.5 km altitude spanning 17 science flights. Measurements of CH2O in the boundary layer and upper troposphere over the southeastern United States were anomalously low compared to studies in other years, and this was attributed to the record low temperatures over this region during the summer of 2004. Formaldehyde is primarily formed over the southeast from isoprene, and isoprene emissions are strongly temperature‐dependent. Despite this effect, the median upper tropospheric (UT) CH2O mixing ratio of 159 pptv from the TDLAS over continental North America is about a factor of 4 times higher than the median UT value of 40 pptv observed over remote regions during TRACE‐P. These observations together with the higher variability observed in this study all point to the fact that continental CH2O levels in the upper troposphere were significantly perturbed during the summer of 2004 relative to more typical background levels in the upper troposphere over more remote regions. The TDLAS measurements discussed in this paper are employed together with box model results in the companion paper by Fried et al. to further examine enhanced CH2O distributions in the upper troposphere due to convection. Measurements of CH2O on the DC‐8 were also acquired by a coil enzyme fluorometric system and compared with measurements from the TDLAS system
A signature of aged biogenic compounds detected from airborne VOC measurements in the high arctic atmosphere in March/April 2018
During the PAMARCMiP 2018 campaign (March and April 2018) a proton-transfer-reaction mass spectrometer (PTR-MS) was deployed onboard the POLAR 5 research aircraft and sampled the high Arctic atmosphere under Arctic haze conditions. More than 100 compounds exhibited levels above 1 pmol/mol in at least 25% of the measurements. We used acetone mixing ratios, ozone concentrations, and back trajectories to identify periods with and without long-range transport from continental sources. During two flights, surface ozone depletion events (ODE) were observed that coincided with enhanced levels of acetone, and methylethylketone, and ice nucleating particles (INP).Air masses with continental influence contained elevated levels of compounds associated with aged biogenic emissions and anthropogenic pollution (e.g., methanol, peroxyacetylnitrate (PAN), acetone, acetic acid, meth-ylethylketone (MEK), proprionic acid, and pentanone). Almost half of all positively detected compounds (>100) in the high Arctic atmosphere can be associated with terpene oxidation products, likely produced from mono-terpenes and sesquiterpenes emitted from boreal forests. We speculate that the transport of biogenic terpene emissions may constitute an important control of the High Arctic aerosol burden. The sum concentration of the detected aerosol forming vapours is-12 pmol/mol, which is of the same order than measured dimethylsulfide (DMS) mixing ratios and their mass density corresponds to approximately one fifth of the measured non-black -carbon particles
Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002
Regional modeling analysis for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment over the eastern Pacific and U.S. West Coast is performed using a multiscale modeling system, including the regional tracer model Chemical Weather Forecasting System (CFORS), the Sulfur Transport and Emissions Model 2003 (STEM-2K3) regional chemical transport model, and an off-line coupling with the Model of Ozone and Related Chemical Tracers (MOZART) global chemical transport model. CO regional tracers calculated online in the CFORS model are used to identify aircraft measurement periods with Asian influences. Asian-influenced air masses measured by the National Oceanic and Atmospheric Administration (NOAA) WP-3 aircraft in this experiment are found to have lower ΔAcetone/ΔCO, ΔMethanol /ΔCO, and ΔPropane/ ΔEthyne ratios than air masses influenced by U.S. emissions, reflecting differences in regional emission signals. The Asian air masses in the eastern Pacific are found to usually be well aged (\u3e5 days), to be highly diffused, and to have low NOy levels. Chemical budget analysis is performed for two flights, and the O3 net chemical budgets are found to be negative (net destructive) in the places dominated by Asian influences or clear sites and positive in polluted American air masses. During the trans-Pacific transport, part of gaseous HNO3 was converted to nitrate particle, and this conversion was attributed to NOy decline. Without the aerosol consideration, the model tends to overestimate HNO3 background concentration along the coast region. At the measurement site of Trinidad Head, northern California, high- concentration pollutants are usually associated with calm wind scenarios, implying that the accumulation of local pollutants leads to the high concentration. Seasonal variations are also discussed from April to May for this site. A high-resolution nesting simulation with 12-km horizontal resolution is used to study the WP-3 flight over Los Angeles and surrounding areas. This nested simulation significantly improved the predictions for emitted and secondary generated species. The difference of photochemical behavior between the coarse (60-km) and nesting simulations is discussed and compared with the observation. Copyright 2004 by the American Geophysical Union
Constraining remote oxidation capacity with ATom observations
The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NOy concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NOy. The severe model overestimate of NOy during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NOy partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3 % to 9 % and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a longlived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land
- …