1,771 research outputs found

    Measurement of interface pressure in interference fits

    Get PDF
    When components such as bearings or gears are pressed onto a shaft, the resulting interference induces a pressure at the interface. The size of this pressure is important as many components fail because fatigue initiates from press-fit stress concentrations. The aim of the present work was to develop ultrasound as a tool for non-destructive determination of press-fit contact pressures. An interference fit interface behaves like a spring. If the pressure is high, there are few air gaps, so it is very stiff and allows transmission of an ultrasonic wave. If the pressure is low, then interface stiffness is lower and most ultrasound is reflected. A spring model was used to determine maps of contact stiffness from interference-fit ultrasonic reflection data. A calibration procedure was then used to determine the pressure. The interface contact pressure has been determined for a number of different press- and shrink-fit cases. The results show a central region of approximately uniform pressure with edge stress at the contact sides. The magnitude of the pressure in the central region agrees well with the elastic Lamé analysis. In the more severe press-fit cases, the surfaces scuffed which led to anomalies in the reflected ultrasound. These anomalies were associated with regions of surface damage at the interface. The average contact pressure in a shrink-fit and press-fit joint were similar. However, in the shrink-fit joint more uneven contact pressure was observed with regions of poor conformity. This could be because the action of pressing on a sleeve plastically smooths out long wavelength roughness, leading to a more conforming surface

    An ultrasonic approach for contact stress mapping in machine joints and concentrated contacts

    Get PDF
    The measurement of pressure at a contact in a machine part is important because contact stresses frequently lead to failure by seizure, wear or fatigue. While the interface might appear smooth on a macroscale, it consists of regions of asperity contact and air gaps on a microscale. The reflection of an ultrasonic pulse at such a rough contact can be used to give information about the contact conditions. The more conformal the contact, the smaller is the proportion of an incident wave amplitude that will be reflected. In this paper, this phenomenon has been used to produce maps of contact pressure at machine element interfaces. An ultrasonic pulse is generated and reflected at the interface, to be received by the same piezoelectric transducer. The transducer is scanned across the interface and a map of reflected ultrasound (a c-scan) is recorded. The proportion of the wave reflected can be used to determine the stiffness of the interface. Stiffness correlates qualitatively with contact pressure, but unfortunately there is no unique relationship. In this work, two approaches have been used to obtain contact pressure: firstly by using an independent calibration experiment, and secondly by using experimental observations that stiffness and pressure are linearly related. The approach has been used in three example cases: a series of press fitted joints, a wheel/rail contact and a bolted joint

    Constraints to do realistic modeling of the electric field ahead of the tip of a lightning leader

    Get PDF
    Several computer models exist to explain the observation of terrestrial gamma-ray flashes (TGFs). Some of these models estimate the electric field ahead of lightning leaders and its effects on electron acceleration and multiplication. In this paper, we derive a new set of constraints to do more realistic modeling. We determine initial conditions based on in situ measurements of electric field and vertical separation between the main charge layers of thunderclouds. A maximum electric field strength of 50 kV/cm at sea level is introduced as the upper constraint for the leader electric field. The threshold for electron avalanches to develop of 2.86 kV/cm at sea level is introduced as the lower value. With these constraints, we determine a region where acceleration and multiplication of electrons occur. The maximum potential difference in this region is found to be ∼\sim52 MV, and the corresponding number of avalanche multiplication lengths is ∼\sim3.5. We then quantify the effect of the ambient electric field compared to the leader field at the upper altitude of the negative tip. Finally, we argue that only leaders with the highest potential difference between its tips (∼\sim600 MV) can be candidates for the production of TGFs. However, with the assumptions we have used, these cannot explain the observed maximum energies of at least 40 MeV. Open questions with regard to the temporal development of the streamer zone and its effect on the shape of the electric field remain

    Experimental characterization of wheel-rail contact patch evolution

    Get PDF
    The contact area and pressure distribution in a wheel/rail contact is essential information required in any fatigue or wear calculations to determine design life, re-grinding, and maintenance schedules. As wheel or rail wear or surface damage takes place the contact patch size and shape will change. This leads to a redistribution of the contact stresses. The aim of this work was to use ultrasound to nondestructively quantify the stress distribution in new, worn, and damaged wheel-rail contacts. The response of a wheel/rail interface to an ultrasonic wave can be modeled as a spring. If the contact pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is lower and almost all the ultrasound is reflected. A quasistatic spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a parallel calibration experiment. Three different contacts were investigated; those resulting from unused, worn, and sand damaged wheel and rail specimens. Measured contact pressure distributions are compared to those determined using elastic analytical and numerical elastic-plastic solutions. Unused as-machined contact surfaces had similar contact areas to predicted elastic Hertzian solutions. However, within the contact patch, the numerical models better reproduced the stress distribution, as they incorporated real surface roughness effects. The worn surfaces were smoother and more conformal, resulting in a larger contact patch and lower contact stress. Sand damaged surfaces were extremely rough and resulted in highly fragmented contact regions and high local contact stress. Copyright © 2006 by ASME

    Internal Duality for Resolution of Rings

    Get PDF
    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 10(16)eV to 10(18)eV and zenith angles less than 38 degrees, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers

    Adaptive paternal effects? Experimental evidence that the paternal environment affects offspring performance

    Get PDF
    The ability of females to adaptively influence offspring phenotype via maternal effects is widely acknowledged, but corresponding nongenetic paternal effects remain unexplored. Males can adjust sperm phenotype in response to local conditions, but the transgenerational consequences of this plasticity are unknown. We manipulated paternal density of a broadcast spawner (Styela plicata, a solitary ascidean) using methods shown previously to alter sperm phenotype in the field, then conducted in vitro fertilizations that excluded maternal effects and estimated offspring performance under natural conditions. Offspring sired by males from low-density experimental populations developed faster and had a higher hatching success than offspring sired by males living in high densities. In the field, offspring survived relatively better when their environment matched their father's, raising the possibility that fathers can adaptively influence the phenotype of their offspring according to local conditions. As the only difference between offspring is whether they were artificially fertilized by sperm from males kept in high- vs. low-density cages, we can unequivocally attribute any differences in offspring performance to an environmentally induced paternal effect. Males of many species manipulate the phenotype of their sperm in response to sperm competition: our results show this plasticity can influence offspring fitness, potentially in adaptive ways, raising the possibility that adaptive nongenetic paternal effects may be more common than previously thought

    Knowledge Problems in Security Protocols: Going Beyond Subterm Convergent Theories

    Get PDF
    We introduce a new form of restricted term rewrite system, the graph-embedded term rewrite system. These systems, and thus the name, are inspired by the graph minor relation and are more flexible extensions of the well-known homeomorphic-embedded property of term rewrite systems. As a motivating application area, we consider the symbolic analysis of security protocols, and more precisely the two knowledge problems defined by the deduction problem and the static equivalence problem. In this field restricted term rewrite systems, such as subterm convergent ones, have proven useful since the knowledge problems are decidable for such systems. However, many of the same decision procedures still work for examples of systems which are "beyond subterm convergent". However, the applicability of the corresponding decision procedures to these examples must often be proven on an individual basis. This is due to the problem that they don\u27t fit into an existing syntactic definition for which the procedures are known to work. Here we show that many of these systems belong to a particular subclass of graph-embedded convergent systems, called contracting convergent systems. On the one hand, we show that the knowledge problems are decidable for the subclass of contracting convergent systems. On the other hand, we show that the knowledge problems are undecidable for the class of graph-embedded systems

    Study of interfacial stiffness ratio of a rough surface in contact using a spring model

    Get PDF
    This study proposes the use of a simple spring model that relates the interfacial stiffness with the complex reflection coefficient of ultrasound in a rough contact. The spring model cannot be directly related to the real area of contact as this depends on the amount, shape and distribution of contacting asperities. However, it is clear that the model provides a non-destructive tool to easily evaluate both longitudinal and shear interfacial stiffnesses and their ratio. Experimental findings indicate that the interfacial stiffness ratio K-tau/K-sigma determined during loading/unloading cycles is sensitive to the roughness level and load hysteresis. The results deviate from the theoretical available micromechanical models, indicating that actual contacting phenomenon is more complex and other variables needed are not accounted for by the models. (C) 2009 Elsevier B.V. All rights reserved

    An ultrasonic method for measuring fluid penetration rate into threaded contacts

    Get PDF
    Various methods have been employed to study the efficacy of multipurpose penetrating oils but these techniques do not investigate the rate which these oils penetrate surfaces. This paper outlines a novel, non-invasive ultrasonic method that provides a direct means of mapping fluid penetration in threaded systems. An apparatus with piezoelectric elements was developed to pulse ultrasonic waves into a nut specimen where the waves reflected from the threaded interface. The reflected signal amplitude shifted as fluid penetrated the thread, allowing the fluid to be mapped to provide a measure of ingress rate. The results for three fluid samples are presented. Measurements suggest the fluid tracks helically down the unloaded side of the thread and radially into the loaded thread surfaces

    Student Misbehaviors, Instructor Responses, And Connected Classroom Climate: Implications for the Basic Course

    Get PDF
    The concept of connected classroom climate focuses on student-to-student communication behaviors that are paramount in creating the climate of a class, especially in the basic course. While previous studies have focused on the positive and cooperative behaviors of students and instructors that may contribute to perceptions of classroom connectedness, the role that incivilities may play in detracting from or undermining a connected classroom climate has not been investigated. This study examines perceptions of a connected classroom climate and its relationships to student misbehaviors and instructor responses. A total of 542 university students enrolled in 30 sections of the basic public speaking course completed the Connected Classroom Climate Inventory (CCCI) and scales measuring student misbehaviors and teacher responses to student misbehaviors. Results showed that student perceptions of a connected classroom climate were inversely related to both inconsiderate and harassing student misbehaviors. The results also revealed a possible relationship between classroom connectedness and the manner in which instructors respond to students when they misbehave. These findings suggest that basic course instructors need to consider how to reduce student inconsideration and harassment misbehaviors in their classes, and how to positively respond to these behaviors when they do occur so that classroom connectedness is not diminished
    • …
    corecore