10 research outputs found

    O ESTUDO DA PRODUÇÃO DE BIOSSURFACTANTES POR FUNGOS AMAZÔNICOS

    Get PDF
    Os biossurfactantes são surfactantes de origem microbiana. São moléculas anfipáticas, capazes de reduzir a tensão superficial, com inúmeras aplicações industriais. Neste estudo avaliou-se a produção de biossurfactantes de fungos amazônicos. Os fungos UEA_115 e UEA_105 foram semeados em meio líquido, acrescido de óleo de soja e cultivados em shaker. O índice de emulsificação foi realizado na presença de querosene e as medidas de tensão superficial do meio de cultivo foram realizadas em um tensiômetro. Após 30 dias de cultivo extraíram-se 1,80 g/L de moléculas tensoativas para o fungo UEA_115 e 0,64 g/L para o UEA_105. Analisaram-se as propriedades físico-químicas do UEA_115 em razão da maior quantidade de biossurfactante obtida. O índice de emulsificação do meio líquido foi de 62,41%. A tensão superficial do meio de cultivo passou de 62,2 mN/m para 41,47 mN/m, ou seja, verificou-se uma redução de 33,3%. A concentração micelar critica (CMC) encontrada foi de 7,287 mg/mL

    Fungicidal properties and insights on the mechanisms of the action of volatile oils from Amazonian Aniba trees

    Get PDF
    The Amazonian Aniba species are world-renowned for their essential oils (EOs). The molecules derived from EOs have been intensively investigated in regards to their potential for disease control in plants. The aim of this study was to investigate the antifungal properties of Aniba canelilla EO (ACEO) and Aniba parviflora EO (APEO) when used against eight phytopathogenic fungi. Gas chromatography-mass spectrometry (GC–MS) analysis of oils showed that 1-nitro-2-phenylethane (∼80%) and linalool (∼40%) are the major compounds in ACEO and APEO, respectively. The ACEO and APEO treatments displayed remarkable antifungal effects against Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Fusarium solani, Alternaria alternata, Colletotrichum gloeosporioides, Colletotrichum musae and Colletotrichum guaranicola, for which the IC50 values ranged from 0.05 to 0.28 μL mL−1 and 0.17 to 0.63 μL mL−1, respectively. Furthermore, the oil caused the inhibition of conidial germination by at least 83% for ACEO and 78% for APEO. The ACEO and APEO at 5 μL mL−1 induced leakage of nucleic acids and protein, suggesting that inhibition could be linked to the breakdown of membrane integrity of the conidia. In addition, the detection of fluorescent dye propidium iodide (PI) on F. solani conidia treated with ACEO and APEO indicates damage on the conidia cytoplasmic membrane. The findings of this study may be of biotechnological interest for the development of new plant protection products, with the advantage of being less harmful than the agrochemicals currently available. © 2019 Elsevier B.V

    Alternative Carbon Sources for Isoprene Emission

    No full text
    Isoprene and other plastidial isoprenoids are produced primarily from recently assimilated photosynthates via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. However, when environmental conditions limit photosynthesis, a fraction of carbon for MEP pathway can come from extrachloroplastic sources. The flow of extrachloroplastic carbon depends on the species and on leaf developmental and environmental conditions. The exchange of common phosphorylated intermediates between the MEP pathway and other metabolic pathways can occur via plastidic phosphate translocators. C1 and C2 carbon intermediates can contribute to chloroplastic metabolism, including photosynthesis and isoprenoid synthesis. Integration of these metabolic processes provide an example of metabolic flexibility, and results in the synthesis of primary metabolites for plant growth and secondary metabolites for plant defense, allowing effective use of environmental resources under multiple stresses. © 201

    Impact of biomass burning on a metropolitan area in the Amazon during the 2015 El Niño: The enhancement of carbon monoxide and levoglucosan concentrations

    No full text
    Biomass burning emissions in the Amazon caused a substantial degradation in the air quality of the Manaus Metropolitan Region (MMR) during the El Niño event of 2015. © 2020 Elsevier LtdExtreme droughts associated with changes in the climate have occurred every 5 years in the Amazon during the 21st century, with the most severe being in 2015. The increase in biomass burning (BB) events that occurred during the 2015 drought had several negative socioeconomic and environmental impacts, one of which was a decrease in the air quality. This study is an investigation into the air quality in the Manaus Metropolitan Region (MMR) (central Amazon, Brazil) during the dry (September to October) and wet (April to May) seasons of 2015 and 2016. A strong El Niño event began during the wet season of 2015 and ended during the wet season of 2016. Particulate matter samples were collected in the MMR during 2015 and 2016, and analyses of the satellite-estimated total carbon monoxide (CO) column and observed levoglucosan concentrations were carried out. Levoglucosan has been shown to be significantly correlated with regional fires and is a well-established chemical tracer for the atmospheric particulates emitted by BB, and CO can be treated as a gaseous-phase tracer for BB. The number of BB events increased significantly during the El Niño period when compared to the average number during 2003–2016. Consequently, the total CO column and levoglucosan concentration values in the MMR increased by 15% and 500%, respectively, when compared to the normal conditions. These results indicate that during the period that was analyzed, the impacts of BB were exacerbated during the strong El Niño event as compared to the non-El Niño period. In this study, we provided evidence that the air quality in the MMR will degrade in the future if droughts and BB occurrences continue to increase. © 2020 Elsevier Lt
    corecore