93 research outputs found

    Fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments

    Full text link
    We present the package for the simulation of DM (Dark Matter) particles in fixed target experiments. The most convenient way of this simulation (and the only possible way in the case of beam-dump) is to simulate it in the framework of the program for tracing particles in the experimental setup. One of the most popular such programs is Geant4. Specifically, the package includes the processes of DM particles production via electron and muon bremsstrahlung off nuclei, resonant in-flight positron annihilation on atomic electrons and gamma to ALP (axion-like particles) conversion on nuclei. Four types of DM mediator particles are considered: vector, scalar, pseudoscalar and axial vector. In particular, for bremsstrahlung the total cross sections are calculated at exact tree level (ETL). The code handles both the case of invisible DM mediator decay and of visible decay into e+ee^+e^- (or into γγ\gamma \gamma in the case of ALP). The software consists of a collection of different classes, inheriting from the Geant4 framework classes, thus the expected use of this package is to include it in a Geant4-based code for the simulation of particles propagation and interaction in the detector. As an example of its usage, we discuss the results obtained from the simulation of a typical active beam-dump experiment, considering 5×10125 \times 10^{12} 100 GeV electrons impinging on a lead/plastic scintillator active thick target, showing the expected sensitivity for the four types of DM mediator particles mentioned above.Comment: 10 pages, 4 figure

    Search for muoproduction of X(3872) at COMPASS and indication of a new state X˜(3872)

    Get PDF
    We have searched for exclusive production of exotic charmonia in the reaction μ+N→μ+(J/ψπ+π−)π±N′ using COMPASS data collected with incoming muons of 160 GeV/c and 200 GeV/c momentum. In the J/ψπ+π− mass distribution we observe a signal with a statistical significance of 4.1 σ. Its mass and width are consistent with those of the X(3872). The shape of the π+π− mass distribution from the observed decay into J/ψπ+π− shows disagreement with previous observations for X(3872). The observed signal may be interpreted as a possible evidence of a new charmonium state. It could be associated with a neutral partner of X(3872) with C=−1 predicted by a tetraquark model. The product of cross section and branching fraction of the decay of the observed state into J/ψπ+π− is determined to be 71±28(stat)±39(syst) pb

    Development of the fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments

    Full text link
    The search for new comparably light (well below the electroweak scale) feebly interacting particles is an exciting possibility to explain some mysterious phenomena in physics, among them the origin of Dark Matter. The sensitivity study through detailed simulation of projected experiments is a key point in estimating their potential for discovery. Several years ago we created the DMG4 package for the simulation of DM (Dark Matter) particles in fixed target experiments. The natural approach is to integrate this simulation into the same program that performs the full simulation of particles in the experiment setup. The Geant4 toolkit framework was chosen as the most popular and versatile solution nowadays. The simulation of DM particles production by this package accommodates several possible scenarios, employing electron, muon or photon beams and involving various mediators, such as vector, axial vector, scalar, pseudoscalar, or spin 2 particles. The bremsstrahlung, annihilation or Primakoff processes can be simulated. The package DMG4 contains a subpackage DarkMatter with cross section methods weakly connected to Geant4. It can be used in different frameworks. In this paper, we present the latest developments of the package, such as extending the list of possible mediator particle types, refining formulas for the simulation and extending the mediator mass range. The user interface is also made more flexible and convenient. In this work, we also demonstrate the usage of the package, the improvements in the simulation accuracy and some cross check validations.Comment: 17 pages, 11 figures, 1 tabl

    Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS

    Full text link
    We report on a direct search for sub-GeV dark photons (A') which might be produced in the reaction e^- Z \to e^- Z A' via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The A's would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75\cdot 10^{9} electrons on target. We set new limits on the \gamma-A' mixing strength and exclude the invisible A' with a mass < 100 MeV as an explanation of the muon g_\mu-2 anomaly.Comment: 6 pages, 3 figures; Typos corrected, references adde

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    Statistique mensuelle de la viande. 1968 N° 4 APRIL-AVRIL = Monthly statistiques of meat. 1968 No. 4 April

    Get PDF
    In high energy experiments such as active beam dump searches for rare decays and missing energy events, the beam purity is a crucial parameter. In this paper we present a technique to reject heavy charged particle contamination in the 100 GeV electron beam of the H4 beam line at CERN SPS. The method is based on the detection with BGO scintillators of the synchrotron radiation emitted by the electrons passing through a bending dipole magnet. A 100 GeV pi- beam is used to test the method in the NA64 experiment resulting in a suppression factor of 10−5 while the efficiency for electron detection is 95%. The spectra and the rejection factors are in very good agreement with the Monte Carlo simulation. The reported suppression factors are significantly better than previously achieved.ISSN:0168-9002ISSN:1872-957

    Hunting down the X17 boson at the CERN SPS

    Get PDF
    Recently, the ATOMKI experiment has reported new evidence for the excess of e+ee^+ e^- events with a mass \sim17 MeV in the nuclear transitions of 4^4He, that they previously observed in measurements with 8^8Be. These observations could be explained by the existence of a new vector X17X17 boson. So far, the search for the decay X17e+eX17 \rightarrow e^+ e^- with the NA64 experiment at the CERN SPS gave negative results. Here, we present a new technique that could be implemented in NA64 aiming to improve the sensitivity and to cover the remaining X17X17 parameter space. If a signal-like event is detected, an unambiguous observation is achieved by reconstructing the invariant mass of the X17X17 decay with the proposed method. To reach this goal an optimization of the X17X17 production target, as well as an efficient and accurate reconstruction of two close decay tracks, is required. A dedicated analysis of the available experimental data making use of the trackers information is presented. This method provides independent confirmation of the NA64 published results [Phys. Rev. D101, 071101 (2020)], validating the tracking procedure. The detailed Monte Carlo study of the proposed setup and the background estimate shows that the goal of the proposed search is feasible
    corecore