6 research outputs found

    Impact of selected baking and vacuum cooling parameters on the quality of toast bread

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)​Vacuum cooling of baked goods can deliver many advantages in terms of product quality and productivity, such as higher volumes and shorter cooling times. However, the associated high costs and the need to adjust baking protocols are of relevance and more information is needed. This paper examines the influence of two main baking protocol parameters on the quality of toast bread, i.e. oven temperature and baking time reduction. Resulting toast bread characteristics including specific bread volume, concavity, browning index, crust and crumb hardness and aw-value were analysed as well as process-dependent core temperature and water loss. In order to compensate for water loss during vacuum cooling and still achieve optimal toast bread quality, a final bread core temperature of 98 °C at the end of baking gave best results, regardless of oven temperature. It was further shown that cooling time can be reduced by a factor of 10 if the baking protocol is optimally adjusted, hinting at a huge potential to increase productivity for industrial applications. In summary, it can be stated that vacuum cooling requires a tailored reduction in baking time in order to compensate for water loss from vacuum cooling while retaining sufficient structural cohesion to resist deformation of the bread

    Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators?

    Get PDF
    The conservation of insect pollinators is drawing attention because of reported declines in bee species and the ‘ecosystem services’ they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, ‘Colony Collapse Disorder’); yet, we still have little understanding of the cause(s) of bee declines. Wild bumble bees (Bombus spp.) have also suffered serious declines and circumstantial evidence suggests that pathogen ‘spillover’ from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35–100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even eliminate pathogen spillover
    corecore