132 research outputs found

    The RUSH2A Study: Best-Corrected Visual Acuity, Full-Field Electroretinography Amplitudes, and Full-Field Stimulus Thresholds at Baseline

    Get PDF
    Purpose: The purpose of this study was to evaluate baseline best corrected visual acuity (BCVA), full-field electroretinography (ERG), full-field stimulus thresholds (FST), and their relationship with baseline demographic and clinical characteristics in the Rate of Progression in Usher syndrome type 2 (USH2A)-related Retinal Degeneration (RUSH2A) multicenter study. Methods: Participants had Usher syndrome type 2 (USH2, N = 80) or autosomal recessive nonsyndromic retinitis pigmentosa (ARRP, N = 47) associated with biallelic variants in the USH2A gene. Associations of demographic and clinical characteristics with BCVA, ERG, and FST were assessed with regression models. Results: In comparison to ARRP, USH2 had worse BCVA (median 79 vs. 82 letters; P < 0.001 adjusted for age), lower rod-mediated ERG b-wave amplitudes (median 0.0 vs. 6.6 ”V; P < 0.001) and 30 Hz flicker cone-mediated ERG amplitudes (median 1.5 vs. 3.1 ”V; P = 0.001), and higher (white, blue, and red) FST thresholds (means [-26, -31, -23 dB] vs. [-39, -45, -28 dB]; P < 0.001 for all stimuli). After adjusting for age, gender, and duration of vision loss, the difference in BCVA between diagnosis groups was attenuated (P = 0.09). Only diagnosis was associated with rod- and cone-mediated ERG parameters, whereas both genders (P = 0.04) and duration of visual loss (P < 0.001) also were associated with FST white stimulus. Conclusions: USH2 participants had worse BCVA, ERG, and FST than ARRP participants. FST was strongly associated with duration of disease; it remains to be determined whether it will be a sensitive measure of progression. Translational Relevance: Using standardized research protocols in RUSH2A, measures have been identified to monitor disease progression and treatment response and differentiate features of prognostic relevance between USH2 and ARRP participants with USH2A mutations

    How safe are the biologicals in treating asthma and rhinitis?

    Get PDF
    A number of biological agents are available or being investigated for the treatment of asthma and rhinitis. The safety profiles of these biologic agents, which may modify allergic and immunological diseases, are still being elucidated. Subcutaneous allergen immunotherapy, the oldest biologic agent in current use, has the highest of frequency of the most serious and life-threatening reaction, anaphylaxis. It is also one of the only disease modifying interventions for allergic rhinitis and asthma. Efforts to seek safer and more effective allergen immunotherapy treatment have led to investigations of alternate routes of delivery and modified immunotherapy formulations. Sublingual immunotherapy appears to be associated with a lower, but not zero, risk of anaphylaxis. No fatalities have been reported to date with sublingual immunotherapy. Immunotherapy with modified formulations containing Th1 adjuvants, DNA sequences containing a CpG motif (CpG) and 3-deacylated monophospholipid A, appears to provide the benefits of subcutaneous immunotherapy with a single course of 4 to 6 preseasonal injections. There were no serious treatment-related adverse events or anaphylaxis in the clinical trials of these two immunotherapy adjuvants. Omalizumab, a monoclonal antibody against IgE, has been associated with a small risk of anaphylaxis, affecting 0.09% to 0.2% of patients. It may also be associated with a higher risk of geohelminth infection in patients at high risk for parasitic infections but it does not appear to affect the response to treatment or severity of the infection

    Effect of allergen-specific immunotherapy with purified Alt a1 on AMP responsiveness, exhaled nitric oxide and exhaled breath condensate pH: a randomized double blind study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little information is available on the effect of allergen-specific immunotherapy on airway responsiveness and markers in exhaled air. The aims of this study were to assess the safety of immunotherapy with purified natural Alt a1 and its effect on airway responsiveness to direct and indirect bronchoconstrictor agents and markers in exhaled air.</p> <p>Methods</p> <p>This was a randomized double-blind trial. Subjects with allergic rhinitis with or without mild/moderate asthma sensitized to <it>A alternata </it>and who also had a positive skin prick test to Alt a1 were randomized to treatment with placebo (n = 18) or purified natural Alt a1 (n = 22) subcutaneously for 12 months. Bronchial responsiveness to adenosine 5'-monophosphate (AMP) and methacholine, exhaled nitric oxide (ENO), exhaled breath condensate (EBC) pH, and serum Alt a1-specific IgG<sub>4 </sub>antibodies were measured at baseline and after 6 and 12 months of treatment. Local and systemic adverse events were also registered.</p> <p>Results</p> <p>The mean (95% CI) allergen-specific IgG<sub>4 </sub>value for the active treatment group increased from 0.07 ÎŒg/mL (0.03-0.11) at baseline to 1.21 ÎŒg/mL (0.69-1.73, P < 0.001) at 6 months and to 1.62 ÎŒg/mL (1.02-2.22, P < 0.001) at 12 months of treatment. In the placebo group, IgG<sub>4 </sub>value increased nonsignificantly from 0.09 ÎŒg/mL (0.06-0.12) at baseline to 0.13 ÎŒg/mL (0.07-0.18) at 6 months and to 0.11 ÎŒg/mL (0.07-0.15) at 12 months of treatment. Changes in the active treatment group were significantly higher than in the placebo group both at 6 months (P < 0.001) and at 12 months of treatment (P < 0.0001). However, changes in AMP and methacholine responsiveness, ENO and EBC pH levels were not significantly different between treatment groups. The overall incidence of adverse events was comparable between the treatment groups.</p> <p>Conclusion</p> <p>Although allergen-specific immunotherapy with purified natural Alt a1 is well tolerated and induces an allergen-specific IgG<sub>4 </sub>response, treatment is not associated with changes in AMP or methacholine responsiveness or with significant improvements in markers of inflammation in exhaled air. These findings suggest dissociation between the immunotherapy-induced increase in IgG<sub>4 </sub>levels and its effect on airway responsiveness and inflammation.</p

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    Social relationships in a cooperatively polyandrous group of tamarins ( Saguinus fuscicollis )

    Full text link
    This paper presents detailed data on the social relationships among the adults, and between the adults and young, of a cooperatively polyandrous saddle-back tamarin ( Saguinus fusciollis ; Callitrichidae) group studied for one year. Some data are also presented from groups studied in other years. Adult males in the study groups gave more grooming than they received, while the opposite was true for females (e.g. Fig. 1). The two polyandrous males in the main study group were very rarely aggressive to each other, rarely tried to disrupt each others' copulations, groomed each other, and occasionally shared food, suggesting that their relationship was more affiliative than agonistic. Data on grooming (Fig. 2), spatial relationships, and the initiation of copulations suggest that the males of this group, may have been somewhat more responsible than the female for the maintenance of male-female relationships. Both males and females performed all forms of parental care except lactation. In the main study group each of the males groomed the offspring and remained in close proximity to them more than did the female (Figs.3 and 4). These data are compared with existing data on social relationships in bird species that exhibit cooperative polyandry.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46887/1/265_2004_Article_BF00299639.pd

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    • 

    corecore