1,346 research outputs found

    Recent Progress on Anomalous X-ray Pulsars

    Get PDF
    I review recent observational progress on Anomalous X-ray Pulsars, with an emphasis on timing, variability, and spectra. Highlighted results include the recent timing and flux stabilization of the notoriously unstable AXP 1E 1048.1-5937, the remarkable glitches seen in two AXPs, the newly recognized variety of AXP variability types, including outbursts, bursts, flares, and pulse profile changes, as well as recent discoveries regarding AXP spectra, including their surprising hard X-ray and far-infrared emission, as well as the pulsed radio emission seen in one source. Much has been learned about these enigmatic objects over the past few years, with the pace of discoveries remaining steady. However additional work on both observational and theoretical fronts is needed before we have a comprehensive understanding of AXPs and their place in the zoo of manifestations of young neutron stars.Comment: 10 pages, 6 figures; to appear in proceedings of the conference "Isolated Neutron Stars: From the Interior to the Surface" eds. S. Zane, R. Turolla, D. Page; Astrophysics & Space Science in pres

    Design of chemical space networks incorporating compound distance relationships

    Get PDF
    Networks, in which nodes represent compounds and edges pairwise similarity relationships, are used as coordinate-free representations of chemical space. So-called chemical space networks (CSNs) provide intuitive access to structural relationships within compound data sets and can be annotated with activity information. However, in such similarity-based networks, distances between compounds are typically determined for layout purposes and clarity and have no chemical meaning. By contrast, inter-compound distances as a measure of dissimilarity can be directly obtained from coordinate-based representations of chemical space. Herein, we introduce a CSN variant that incorporates compound distance relationships and thus further increases the information content of compound networks. The design was facilitated by adapting the Kamada-Kawai algorithm. Kamada-Kawai networks are the first CSNs that are based on numerical similarity measures, but do not depend on chosen similarity threshold values

    Development and resilience in three Arctic ecosystems: Baltic, Barents and Iceland Seas

    Get PDF
    In this GreenMAR project we look into the historical development of the marine ecosystems that surround the Nordic countries in an effort to forecast their future evolution. We pay particular attention to the way their food webs responded to similar stressors (warming) and fishing regimes in the past. We have compiled historical information on environmental and biological components, from plankton to fish, over the last 25 to 45 years, depending on the system. On these four ecosystems we have: (i) carried out multivariate analyses to describe their main trends and (ii) constructed stability landscapes to quantify their resilience. We will show these results and discuss their implications

    Rapid optical and X-ray timing observations of GX 339−4: multicomponent optical variability in the low/hard state

    Full text link
    A rapid timing analysis of Very Large Telescope (VLT)/ULTRACAM (optical) and RXTE (X-ray) observations of the Galactic black hole binary GX  339− 4 in the low/hard, post-outburst state of 2007 June is presented. The optical light curves in the r ′,  g ′ and u ′ filters show slow (∼20 s) quasi-periodic variability. Upon this is superposed fast flaring activity on times approaching the best time resolution probed (∼50 ms in r ′ and g ′) and with maximum strengths of more than twice the local mean. Power spectral analysis over ∼0.004–10 Hz is presented, and shows that although the average optical variability amplitude is lower than that in X-rays, the peak variability power emerges at a higher Fourier frequency in the optical. Energetically, we measure a large optical versus X-ray flux ratio, higher than that seen on previous occasions when the source was fully jet dominated. Such a large ratio cannot be easily explained with a disc alone. Studying the optical–X-ray cross-spectrum in Fourier space shows a markedly different behaviour above and below ∼0.2 Hz. The peak of the coherence function above this threshold is associated with a short optical time lag with respect to X-rays, also seen as the dominant feature in the time-domain cross-correlation at ≈150 ms. The rms energy spectrum of these fast variations is best described by distinct physical components over the optical and X-ray regimes, and also suggests a maximal irradiated disc fraction of 20 per cent around 5000 Å. If the constant time delay is due to propagation of fluctuations to (or within) the jet, this is the clearest optical evidence to date of the location of this component. The low-frequency quasi-periodic oscillation is seen in the optical but not in X-rays, and is associated with a low coherence. Evidence of reprocessing emerges at the lowest Fourier frequencies, with optical lags at ∼10 s and strong coherence in the blue u ′ filter. Consistent with this, simultaneous optical spectroscopy also shows the Bowen fluorescence blend, though its emission location is unclear. However, canonical disc reprocessing cannot dominate the optical power easily, nor explain the fast variability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79284/1/j.1365-2966.2010.17083.x.pd

    Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes

    Get PDF
    AbstractMismatch repair (MMR) proteins repair mispaired DNA bases and have an important role in maintaining the integrity of the genome [1]. Loss of MMR has been correlated with resistance to a variety of DNA-damaging agents, including many anticancer drugs [2]. How loss of MMR leads to resistance is not understood, but is proposed to be due to loss of futile MMR activity and/or replication stalling [3,4]. We report that inactivation of MMR genes (MLH1, MLH2, MSH2, MSH3, MSH6, but not PMS1) in isogenic strains of Saccharomyces cerevisiae led to increased resistance to the anticancer drugs cisplatin, carboplatin and doxorubicin, but had no effect on sensitivity to ultraviolet C (UVC) radiation. Sensitivity to cisplatin and doxorubicin was increased in mlh1 mutant strains when the MLH1 gene was reintroduced, demonstrating a direct involvement of MMR proteins in sensitivity to these DNA-damaging agents. Inactivation of MLH1, MLH2 or MSH2 had no significant effect, however, on drug sensitivities in the rad52 or rad1 mutant strains that are defective in mitotic recombination and removing unpaired DNA single strands. We propose a model whereby MMR proteins – in addition to their role in DNA-damage recognition – decrease adduct tolerance during DNA replication by modulating the levels of recombination-dependent bypass. This hypothesis is supported by the finding that, in human ovarian tumour cells, loss of hMLH1 correlated with acquisition of cisplatin resistance and increased cisplatin-induced sister chromatid exchange, both of which were reversed by restoration of hMLH1 expression

    Constraining Radio Emission from Magnetars

    Full text link
    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected was detected for any of our targets. The non-detections allow us to place luminosity upper limits (at 1950 MHz) of approximately L < 1.60 mJy kpc^2 for periodic emission and L < 7.6 Jy kpc^2 for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.Comment: 11 pages, 4 figure

    Developing fencing policies in dryland ecosystems

    Get PDF
    The daily energy requirements of animals are determined by a combination of physical and physiological factors, but food availability may challenge the capacity to meet nutritional needs. Western gorillas (Gorilla gorilla) are an interesting model for investigating this topic because they are folivore-frugivores that adjust their diet and activities to seasonal variation in fruit availability. Observations of one habituated group of western gorillas in Bai-Hokou, Central African Republic (December 2004-December 2005) were used to examine seasonal variation in diet quality and nutritional intake. We tested if during the high fruit season the food consumed by western gorillas was higher in quality (higher in energy, sugar, fat but lower in fibre and antifeedants) than during the low fruit season. Food consumed during the high fruit season was higher in digestible energy, but not any other macronutrients. Second, we investigated whether the gorillas increased their daily intake of carbohydrates, metabolizable energy (KCal/g OM), or other nutrients during the high fruit season. Intake of dry matter, fibers, fat, protein and the majority of minerals and phenols decreased with increased frugivory and there was some indication of seasonal variation in intake of energy (KCal/g OM), tannins, protein/fiber ratio, and iron. Intake of non-structural carbohydrates and sugars was not influenced by fruit availability. Gorillas are probably able to extract large quantities of energy via fermentation since they rely on proteinaceous leaves during the low fruit season. Macronutrients and micronutrients, but not digestible energy, may be limited for them during times of low fruit availability because they are hind-gut fermenters. We discuss the advantages of seasonal frugivores having large dietary breath and flexibility, significant characteristics to consider in the conservation strategies of endangered species

    The Unusual Binary Pulsar PSR J1744-3922: Radio Flux Variability, Near-infrared Observation and Evolution

    Get PDF
    PSR J1744-3922 is a binary pulsar exhibiting highly variable pulsed radio emission. We report on a statistical multi-frequency study of the pulsed radio flux variability which suggests that this phenomenon is extrinsic to the pulsar and possibly tied to the companion, although not strongly correlated with orbital phase. The pulsar has an unusual combination of characteristics compared to typical recycled pulsars: a long spin period (172 ms); a relatively high magnetic field strength (1.7x10^10 G); a very circular, compact orbit of 4.6 hours; and a low-mass companion (0.08 Msun). These spin and orbital properties are likely inconsistent with standard evolutionary models. We find similarities between the properties of the PSR J1744-3922 system and those of several other known binary pulsar systems, motivating the identification of a new class of binary pulsars. We suggest that this new class could result from either: a standard accretion scenario of a magnetar or a high-magnetic field pulsar; common envelope evolution with a low-mass star and a neutron star, similar to what is expected for ultra-compact X-ray binaries; or, accretion induced collapse of a white dwarf. We also report the detection of a possible K'=19.30(15) infrared counterpart at the position of the pulsar, which is relatively bright if the companion is a helium white dwarf at the nominal distance, and discuss its implications for the pulsar's companion and evolutionary history.Comment: 18 pages, 8 figures, accepted for publication of Ap

    Radiation tolerance of GaAs1-xSbx solar cells

    Get PDF
    High radiation tolerance of GaAs1-xSbx based solar cells is demonstrated for the low-intensity-low-temperature (LILT) conditions of the target planets Saturn, Jupiter, and Mars. The GaAs1-xSbx-based cells are irradiated with high energy electrons to assess the effect of harsh radiation environment on the solar cell and the response of the cell is then investigated in terms of its photovoltaic operation. This system shows significant radiation resistance to the high energy electron environment for the conditions of the planets of interest. An unusual increase of the short circuit current after irradiation is observed at low temperature, which is supported by a simultaneous increase in the external quantum efficiency of the cell under the same conditions. The open circuit voltage and fill factor of the cell are especially tolerant to irradiation, which is also reflected in unchanged dark current-voltage characteristics of the solar cell upon irradiation particularly at LILT
    • …
    corecore