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Abstract
Networks, in which nodes represent compounds and edges pairwise similarity
relationships, are used as coordinate-free representations of chemical space.
So-called chemical space networks (CSNs) provide intuitive access to
structural relationships within compound data sets and can be annotated with
activity information. However, in such similarity-based networks, distances
between compounds are typically determined for layout purposes and clarity
and have no chemical meaning. By contrast, inter-compound distances as a
measure of dissimilarity can be directly obtained from coordinate-based
representations of chemical space. Herein, we introduce a CSN variant that
incorporates compound distance relationships and thus further increases the
information content of compound networks. The design was facilitated by
adapting the Kamada-Kawai algorithm. Kamada-Kawai networks are the first
CSNs that are based on numerical similarity measures, but do not depend on
chosen similarity threshold values.
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Introduction
In chemoinformatics, molecular network representations have  
thus far mostly been applied to study similarity relationships 
between compounds and visualize structure-activity relationships 
(SARs)1–3. In such networks, molecules are represented as nodes 
and edges indicate pairwise similarity relationships. Potency infor-
mation can be added, for example, through node coloring, which 
provides a basis for SAR visualization2. A prototypic network  
representation specifically designed for SAR analysis was the  
‘network-like similarity graph’ (NSG)3, a precursor of more  
generally defined ‘chemical space networks’ (CSNs)4, which are 
characterized using statistical concepts from the interdisciplinary 
field of network science5. As SAR-oriented network representa-
tions, NSGs provide immediate visual access to local com-
munities (subsets) of active compounds with interesting SAR  
characteristics.

A major distinguishing feature of different CSNs is the way in 
which molecular similarity relationships are established5. The use 
of alternative similarity measures often changes local and global 
network properties of CSNs5. When numerical similarity measures 
are used, pairwise compound comparisons yield a similarity matrix 
that contains similarity values for all compound pairs in a data set. 
The application of a similarity threshold value then transforms the 
similarity matrix into an adjacency matrix, which serves as input 
for layout algorithms to generate a graphical representation6. In 
fact, network appearance is often strongly influenced by chosen 
layout algorithms.

Conventional chemical space representations used in chemoinfor-
matics are mostly generated on the basis of vectors of numerical 
descriptors. The resulting coordinate-based space representations 
are multi- or high-dimensional, with each chosen descriptor adding 
another dimension to the space. In such coordinate-based spaces, 
compound positions are unambiguously defined and so are distances 
between compounds that are quantified as a measure of dissimilar-
ity, i.e. the larger the distance is, the more dissimilar the compounds 
are. By contrast, CSNs have become a paradigm of coordinate-free 
chemical space representations, which are entirely determined by 
pairwise similarity relationships4,5. If substructure-based similarity 
measures are employed, binary relationships are obtained (i.e. two 
compounds are either ‘similar’ or not); if similarity threshold values 
are applied to numerical measures, pairs of compounds reaching 
the threshold are classified as similar (and appear in the adjacency 
matrix). Hence, distance relationships between compounds are  
typically not considered in coordinate-free chemical space 
representations.

In this work, we introduce a novel layout for CSNs that does not 
depend on chosen threshold values, but takes distances derived 
from pairwise similarity values into account. Thus, in contrast to 
currently available CSNs, distances between compounds and com-
munities in the resulting networks become chemically relevant (at 
least with respect to chosen descriptors), which further increases 
the information content of these representations. 

Methods
Data sets
For network design, one large and three small compound sets 
(active against human targets with defined equilibrium constants) 
were taken from ChEMBL (version 21) (https://www.ebi.ac.uk/
chembl/)7, as reported in Table 1. We note that there was no specific 
reason to focus on these sets; many others could have been selected 
instead.

Molecular representation and similarity metric
Compounds were represented using the MACCS fingerprint8 (con-
sisting of 166 structural keys or patterns), which were generated 
using an in-house Python implementation. Pairwise similarity 
values were calculated using the Tanimoto coefficient (Tc)9. Fin-
gerprint descriptors of different design might have been selected 
instead, but for our proof-of-principle investigation, the relatively 
simple MACCS fingerprint was readily sufficient. 

Similarity vs. distance
Pairwise similarity values were transformed into distances using 
the formula

distance = 1 – CDF(similarity)

where CDF is the cumulative distribution function for an assumed 
normal distribution. For each compound set, the mean and standard 
deviation were calculated from its pairwise similarity values. The 
CDF was used to emphasize compound pairs with large Tc values 
and de-emphasize pairs with small values compared to a linear 
relationship.

Network layouts
Alternative CSN layouts were generated with in-house Java  
programs based upon the JUNG library (http://jung.sourceforge.
net/doc/JUNG_journal.pdf). Please also see the ‘Data availability’ 
section.

Fruchterman-Reingold. The Fruchterman-Reingold (FR)  
algorithm10 has so far consistently been used for NSGs3 and 
CSNs5. FR is a force-directed algorithm that brings together sub-
sets of densely connected objects and separates different subsets 
from each other through repulsion (until equilibrium positions are 

Table 1. Compound sets.

ID Target set # CPDs

11638 MAP kinase ERK2 inhibitors 90

222 Glutamate [NMDA] receptor subunit 
ε 2 ligands 59

100476 Apoptosis regulator Bcl-W inhibitors 48

51 Serotonin 1a (5-HT1a) receptor 
ligands 1680

‘ID’ is the ChEMBL target identifier and ‘# CPDs’ means number of 
compounds.
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obtained). Only similarity values reaching a pre-defined threshold 
are considered in FR layout construction (all other similarity val-
ues are ignored). In FR-based network views, distances between  
compounds have no chemical meaning. 

Kamada-Kawai. The Kamada-Kawai (KK) algorithm11, adapted 
herein for CSN design, is also a force-directed layout method. How-
ever, KK uses all distances derived from similarity values as input, 
and optimizes (threshold-independent) edge lengths with respect 
to inter-compound distances. Thus, the KK approach incorporates 
distance relationships into network layouts. In principle, KK-based 
networks are completely connected. Thus, edges between distant 
compounds might be omitted for clarity. Although all similarity 
values and corresponding distance relationships are considered 
for network construction, for selective edge display, similarity 
threshold values can also be applied.

As similarity-based compound networks, KK network repre-
sentations are covered by the general definition of CSNs4,5 and  
are in the following also referred to as KK CSNs.

Results and discussion
Kamada-Kawai network design
The characteristic feature of the KK approach is that it takes dis-
tances derived from all pairwise similarity values quantitatively into 
account during network construction. The resulting layout reflects 
relative compound distances, which principally increases the chemi-
cal information contained in KK CSNs compared to threshold- 
dependent FR CSNs. Independent of the KK network structure, 
which remains constant, edges in KK CSNs can be selectively dis-
played at varying similarity threshold values to optimize the clarity 
of the presentation.

Kamada-Kawai network of a model data set
For an initial proof-of-principle assessment, a model data set  
was generated by combining four subsets (A–D) of five hypotheti-
cal data points, each with well-defined intra-set similarity value  
ranges, as reported in Table 2. Subsets A–C contained highly simi-
lar data points with varying inter-subset similarity values (Table 2), 
whereas subset D consisted of dissimilar data points (singletons). 
The KK CSN of this model data set is shown in Figure 1. All three 
subsets of similar data points formed separate clusters in the net-
work, whereas data points from subset D were widely distributed. 

Furthermore, clusters of subsets A and B, which displayed largest 
inter-subset similarity values (Table 2), were located close to each 
other and removed from the less similar subset C. Moreover, the KK 
CSN also correctly accounted for the smaller distance between 
A and C compared to B and C. Thus, the KK CSN incorporated 
for various distance relationships present in the model set; an 
encouraging finding.

Kamada-Kawai networks for different sets of bioactive 
compounds
Figure 2 shows KK CSNs for data sets 11638 and 222 (Table 1). In 
each case, edges were selectively displayed at three different simi-
larity threshold values, which enabled viewing edge distributions on 
a “sliding scale”. The KK CSN of set 11638 revealed a clear clus-
tering of similar compounds with comparably high or low potency, 
corresponding to the presence of locally continuous SARs1. By 
contrast, the KK CSN of set 222 revealed a cluster of highly similar 
compounds with large potency variations, corresponding to a high 
degree of local SAR discontinuity1. This cluster was distant from 
other compounds of set 222, consistent with the presence of unique 
structural features.

Comparison of Kawada-Kawai and Fruchterman-Reingold 
networks
Figure 3 compares the KK and FR CSNs for set 100476, revealing 
the presence of distinct layouts. In the KK CSN a larger cluster 
of similar –and mostly weakly potent– compounds emerged that 
was distant from other data set compounds. The corresponding FR 
CSN provided a completely different view of the compound set 
with several clusters that were essentially evenly distributed across 

Table 2. Similarity relationships in a 
model data set.

A B C D

A 1.0-0.9 0.8-0.7 0.6-0.5 0.1-0.0

B 0.8-0.7 1.0-0.9 0.4-0.3 0.1-0.0

C 0.6-0.5 0.4-0.3 1.0-0.9 0.1-0.0

D 0.1-0.0 0.1-0.0 0.1-0.0 0.1-0.0

For each subset of compounds in the model 
data set, intra-set (diagonal) and inter-set 
MACCS Tc value ranges are given.

Figure 1. Kamada-Kawai network of a model data set. Shown is 
the KK CSN of the model data set according to Table 2. Data points 
are colored on the basis of compound subset membership: A, blue; 
B, red; C, green; D, gray.
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Figure 2. Chemical space networks with compound distance relationships. KK CSNs are displayed for two data sets (11638 and 222 
according to Table 1) at three similarity threshold values of 0.8, 0.7, and 0.6, respectively. Nodes are colored on the basis of potency values 
applying a color gradient from green (highest potency) over yellow (intermediate) to red (lowest potency).
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Figure 3. Comparison of Kamada-Kawai and Fruchterman-Reingold layouts. For data set 100476, KK and FR CSNs are compared at 
a similarity threshold value of 0.8 for selective edge display (KK) and network generation (FR). Nodes are colored according to Figure 2. 
At the bottom, similarity values and corresponding network distances of all compound pairs are compared in scatter plots and correlation 
coefficients are reported.

the layout (consistent with its threshold-dependent force-directed 
design). For each of these clusters, a corresponding cluster was also 
identified in the KK CSN. In three cases, the corresponding com-
pounds were so similar –and the resulting distances so small– that 
these clusters needed to be magnified for a detailed inspection, as 
shown in Figure 4a. Hence, the KK and FR CSNs also provided 
complementary network views of the data set.

The scatter plots in Figure 3 reveal that there was no correlation 
between similarity values and network distances in the FR CSN, 
consistent with its design principles. By contrast, with a correla-
tion coefficient of -0.79, significant inverse correlation (i.e. large 
similarity values corresponding to small distances) was observed 
for the KK CSN, which was largely determined by compound pairs 
with similarity values greater than 0.5. For small similarity values, 
correlation was only weak. This observation was consistent with the 
use of the CDF in the distance function, which emphasized distance 
relationships between similar compounds, as discussed above. For 
data sets 222 and 11638 (Figure 2), KK CSNs yielded correlation 
coefficients of -0.84 and -0.88, respectively.

Comparison of compound communities and series
In Figure 4a, corresponding compound communities in KK and FR 
CSNs are compared in detail. FR CSN clusters contain edges of 
comparable length and have similar topology, which is a character-
istic feature of this layout. By contrast, KK CSN clusters display 
different topologies and contain edges of different length that fur-
ther differentiate intra-cluster similarity relationships and position 
similar compounds closely together. For example, compounds 3, 
4, and 5 from the cluster at the top in Figure 4a only differ by the 
(ortho, meta, or para) position of a benzene ring and are more simi-
lar to each other than to compounds 1, 2, 6, and 7 that have different 
substituents (Figure 4b).

Figure 5 shows a KK CSN representation for three analog series (A, 
B, and C) that were extracted from compound set 51. Series A and B 
had chemically related core structures, whereas the core of series C 
was distinct from A and B. In the KK CSN, the three series formed 
communities that were separated from each other. Consistent with 
the structural relationship between their cores, series A and B were 
positioned closer to each other than to series C. A single compound 

Page 5 of 10

F1000Research 2016, 5(Chem Inf Sci):2634 Last updated: 22 NOV 2016



Figure 4. Comparison of compound communities. In (a), corresponding compound communities are highlighted in the KK and FR CSNs 
from Figure 3 and enlarged. Compounds in each community are numbered. In (b), compounds forming the top cluster in (a) are shown.

A

B
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Figure 5. Exemplary compound series. Shown are three analog series from the KK CSN of data set 51. For clarity, a similarity threshold value 
of 0.88 was applied for edge display. Each analog series is encircled and its common core structure is displayed. Compounds in each series 
were distinguished by substituents at a single site (R1).

from series A was found to form a bridge between the communities 
of A and B. This compound contained a cyclobutyl substituent at 
R1 and thus closely resembled the core of series B. Taken together, 
these observations indicated that the KK CSN captured similarity 
relationships between these analog series in a meaningful way. 

Conclusions
We have introduced an approach to incorporate compound  
distance relationships into CSNs that are coordinate-free represen-
tations of chemical space. For this purpose, the KK algorithm was 
adapted, which takes into account all inter-compound distances 
during network construction and does not depend on chosen simi-
larity threshold values, in contrast to the FR algorithm. As such, 
KK networks also represent the first threshold-independent CSNs 
for numerical similarity measures, which further extends the cur-
rent CSN spectrum. Initial results obtained for KK CSNs were 

encouraging, as demonstrated by the study of a model data set, for 
which subset relationships were correctly reproduced. Informa-
tive KK CSNs were also obtained for sets of bioactive compounds. 
Furthermore, we have shown that KK and FR CSNs may provide 
complementary representations that make it possible to view and 
compare compound communities in different ways. KK CSNs  
were also found to capture chemical relationships between analog 
series, which provided an advantage compared to FR CSNs.

In summary, the results of our proof-of-principle investigation  
suggest that KK CSNs should be of considerable interest for  
further exploring biologically relevant chemical space.

Data availability
The data sets used in this study are freely available in ChEMBL 
(https://www.ebi.ac.uk/chembl/) via the identifiers reported Table 1. 
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The NSG (FR CSN) software is freely available as a part of the 
SARANEA program suite12 in an open access deposition (DOI: 
10.12688/f1000research.3713.1)13. The implementation can be 
adapted to generate KK CSNs.
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