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Dependence on RAD52 and RAD1 for anticancer drug resistance
mediated by inactivation of mismatch repair genes
Stephen T. Durant, Melanie M. Morris, Maureen Illand, Helen J. McKay, 
Carol McCormick, Gillian L. Hirst, Rhona H. Borts* and Robert Brown

Mismatch repair (MMR) proteins repair mispaired DNA
bases and have an important role in maintaining the
integrity of the genome [1]. Loss of MMR has been
correlated with resistance to a variety of DNA-damaging
agents, including many anticancer drugs [2]. How loss
of MMR leads to resistance is not understood, but is
proposed to be due to loss of futile MMR activity and/or
replication stalling [3,4]. We report that inactivation of
MMR genes (MLH1, MLH2, MSH2, MSH3, MSH6, but not
PMS1) in isogenic strains of Saccharomyces cerevisiae
led to increased resistance to the anticancer drugs
cisplatin, carboplatin and doxorubicin, but had no effect
on sensitivity to ultraviolet C (UVC) radiation. Sensitivity
to cisplatin and doxorubicin was increased in mlh1
mutant strains when the MLH1 gene was reintroduced,
demonstrating a direct involvement of MMR proteins in
sensitivity to these DNA-damaging agents. Inactivation
of MLH1, MLH2 or MSH2 had no significant effect,
however, on drug sensitivities in the rad52 or rad1
mutant strains that are defective in mitotic
recombination and removing unpaired DNA single
strands. We propose a model whereby MMR proteins —
in addition to their role in DNA-damage recognition —
decrease adduct tolerance during DNA replication by
modulating the levels of recombination-dependent
bypass. This hypothesis is supported by the finding that,
in human ovarian tumour cells, loss of hMLH1
correlated with acquisition of cisplatin resistance 
and increased cisplatin-induced sister chromatid
exchange, both of which were reversed by restoration 
of hMLH1 expression.
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Results and discussion
We examined drug sensitivities of isogenic haploid strains of
S. cerevisiae that had specific MMR genes disrupted

(Table 1; for a review of the biochemistry and genetics of
eukaryotic MMR, see [5]). Disruption of the MutS homo-
logues MSH2, MSH3 and MSH6 and the MutL homologues
MLH1 and MLH2 (but not PMS1) conferred a significant
increase in resistance to cisplatin and carboplatin compared
with the wild type (Table 1, Figure 1a). Genetic inactiva-
tion of MLH1, MSH2, MSH3 and MSH6 also led to
increased resistance to doxorubicin. None of the MMR
mutants, however, showed any significant increase in resis-
tance or sensitivity to UVC radiation (Table 1). Transforma-
tion of the MLH1 gene back into the mlh1 mutant strain
(mlh1 + pMLH1) led to increased sensitivity to cisplatin and
doxorubicin compared with vector-alone controls
(mlh1 + vector; Table 1). Together, these results demon-
strate a direct role of MMR proteins in cisplatin, carboplatin
and doxorubicin sensitivity. 

Loss of MMR usually leads to increased gene mutation rates,
leading to a mutator phenotype [6,7]. We examined the
MMR mutant strains used for mutant frequency (Table 1)
and mutation rate [8]. The wild-type strain had a mutation
rate of 3.7 × 10–8 per viable cell, mlh2 mutants a rate of
6.7 × 10–8 per viable cell and pms1 mutants a rate of
8.7 × 10–6 per viable cell. The drug-resistance phenotype of
mlh2 mutants and absence of it in pms1 mutants suggests that
Mlh2p, but not Pms1p, has a role in processing of the type of
damage induced by these agents. The mutator phenotype in
pms1 but not in mlh2 mutants argues that loss of MMR activ-
ity per se (or at least MMR activity requiring Pms1p) need
not lead to resistance, and that acquisition of drug resistance
is not due to the mutator phenotype of these strains.

The S. cerevisiae RAD52 gene is involved in meiotic and
mitotic recombination [9]. RAD52 inactivation led to
increased sensitivity to cisplatin and UV radiation
(Table 1). Inactivation of MLH1, MLH2 or MSH2 in a rad52
mutant strain had no significant effect on sensitivity to cis-
platin, carboplatin or UV radiation (Table 1, Figure 1b).
Thus, inactivation of RAD52 leads to loss of the resistance
mediated by MMR gene inactivation and a sensitisation of
the yeast to these agents. This suggests that drug resistance
mediated by loss of MMR is dependent on Rad52p activity
and implicates a recombination-dependent process in
damage tolerance. Possible models for recombinational
bypass of lesions during DNA replication, that would be
Rad52p dependent, have been proposed previously [10].

Inactivation of RAD1 also led to increased sensitivity to
cisplatin, carboplatin and UV radiation (Table 1). The
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RAD1 gene in S. cerevisiae is involved in nucleotide exci-
sion repair (NER), but has also been implicated in mitotic
recombination [11]. Purified Rad1p interacts with DNA
bubble structures, is required for the endonucleolytic
cleavage that removes 3′ single-stranded DNA ends [11],
and is also required for removal of non-homologous ends
during recombination [12]. These are activities that could
be required for recombination-dependent DNA-damage
bypass by removing bases to allow initiation of replication
after bypass [13]. Inactivation of MLH1, MLH2 or MSH2
had no significant effect on cisplatin or carboplatin sensi-
tivities in a rad1 mutant strain (Table 1, Figure 1c). These
observations are consistent with Rad1p being necessary
for increased damage bypass.

We propose a model whereby loss of MMR proteins can
increase RAD52/RAD1-dependent recombinational bypass
of adducts (see Figure 2). Treatment of cells with cisplatin
and carboplatin induces predominantly 1,2 intrastrand
DNA crosslinks which is believed to be the major cytotoxic
lesion [14], although a role for the minor lesions cannot be
excluded. The 1,2 intrastrand crosslink induced by cis-
platin and carboplatin is poorly repaired, either due to not
being recognised by NER [15] or by inhibition of repair,
for instance by damage-recognition proteins [16]. Consis-
tent with this, inactivation of RAD1 in S. cerevisiae did not
give the extreme hypersensitivity to cisplatin observed for
UV radiation (Table 1). Persistent or non-repaired DNA

lesions could lead to a cytotoxic signal being generated
during DNA replication. The heterodimer of Msh2p and
Msh6p — hMutSα —recognises 1,2 cisplatin crosslinks in
a complementary duplex DNA and with greater affinity if
the platinated guanine residues are opposite non-comple-
mentary bases [17]. Bypass of cisplatin DNA lesions during
DNA replication has been shown in cisplatin-resistant
human cells which correlates with defects in MMR [18].
The mechanisms leading to bypass are largely unknown,
but possibilities include recombinational mechanisms, as
well as trans-lesion DNA synthesis. It has been shown that
MMR proteins can affect levels of homologous recombina-
tion in yeast [19,20]. Alternatively, MMR proteins recog-
nising cisplatin adducts may lead to inefficient MMR,
which competes with recombinational bypass of the lesion.
If RAD52/RAD1-dependent recombinational bypass of
DNA adducts occurs during replication, then inhibition of,
or competition with, either initiation or progression of this
process by MMR proteins will lead to sensitivity. Con-
versely, loss of MMR proteins will reduce the probability
of lethal signals being generated during replication by
increasing adduct bypass, leading to resistance. Consistent
with DNA replication being necessary for MMR-depen-
dent drug sensitivity, we observed a significantly increased
resistance of cells exposed to cisplatin during the stationary
phase of growth compared with exponentially growing
cells — for an exponentially growing wild-type strain of S.
cerevisiae, the concentration of cisplatin that results in 90%
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Table 1

Sensitivities of MMR mutants to anti-cancer drugs and UV radiation.

Genotype Strain IC90 RF IC90 RF IC90 RF IC90 RF Mutant
Cisplatin (mM) Carboplatin (mM) Doxorubicin (mM) UV (J/m2) frequency

Wild type 2096-1B 1 1 13 1 70 1 170 1 1.6 × 10–6

msh2 RHB 2348 1.7 1.7* 20 1.5* 370 5.3* 210 1.2 2.5 × 10–5

msh3 RHB 2347 1.8 1.7* 28 2.2* 310 4.4* 130 0.8 n.d.
msh6 NHT 173 1.7 1.6* 29 2.2* 420 6* 190 1.1 n.d.
mlh1 RBT 311 1.5 1.4* 36 2.8* 150 2.1* 150 0.9 4.7 × 10–5

mlh2 RBT 324 2 2* 40 3.1* n.d. – 150 0.9 9.6 × 10–7

pms1 RBT 269 1.1 1.1 10 0.7 n.d. – 140 0.8 8.7 × 10–5

mlh1 + vector RBT311:v 1.6 1.6* 29 2.2* 120 1.7* n.d. – n.d.
mlh1 + pMLH1 RBT311:mlh1 0.5 0.5* 10 0.8 30 0.4* n.d. – n.d.

rad52 RHB 2692 0.7 0.7* 13 1 n.d. – 70 0.4* n.d.
rad52/msh2 RHB 2700 0.7 0.7 13 1 n.d. – 70 0.4 n.d.
rad52/mlh1 RHB 2698 0.5 0.5 12 0.9 n.d. – 80 0.5 n.d.
rad52/mlh2 RHB 2699 0.6 0.6 13 1 n.d. – 100 0.6 n.d.

rad1 RBT 302 0.6 0.6* 7 0.5* n.d. – 10 0.06* n.d.
rad1/msh2 RHB 2694 0.6 0.6 7.5 0.6 n.d. – 13 0.08 n.d.
rad1/mlh1 RHB 2693 0.7 0.7 8 0.6 n.d. – 11 0.06 n.d.
rad1/mlh2 RHB 2695 0.6 0.6 8 0.6 n.d. – 11 0.06 n.d.

All strains are isogenic derivatives of a Matα wild-type strain. The
construction of all of the mismatch-repair-deficient strains except mlh2
has been described [22]. MLH2 was deleted using an oligonucleotide-
based KANMX disruption cassette. RAD52 was disrupted with LEU2
using plasmid pMS20 obtained from D. Schild [23]. RAD1 was
deleted using a LEU2 disruption/deletion plasmid obtained from
R. Keil [24]. IC90, concentration of drug inducing a 90% reduction in

surviving fraction. RF, resistance factor relative to the wild-type strain.
Those marked with an asterisk are significantly different in drug
sensitivity from the wild-type strain or the corresponding single mutant,
as assessed by a two-tailed Student’s t-test at 1.5 mM cisplatin or
15 mM carboplatin. Mutant frequency, the number of L-canavanine-
resistant colonies per 106 colony forming units; n.d., not determined. 



inhibition of clonal growth (ID90) is 1.0 mM, whereas that
of stationary cells is 1.8 mM. On the other hand, the cis-
platin sensitivity of msh2 mutants (ID90 = 1.7 mM) is not
affected by growth phase.

To examine the potential relevance of the observations
made in S. cerevisiae to how tumours may acquire resistance
to these chemotherapeutic drugs, we examined cisplatin
sensitivities in a matched set of human ovarian tumour cell
lines. If recombinational bypass of DNA adducts during
DNA replication occurred, this would be manifested by a
sister chromatid exchange (SCE). A2780 is a human ovarian
carcinoma cell line derived from an untreated patient,

whereas A2780/cp70 is an in-vitro-derived cisplatin-resistant
derivative that has lost MMR activity due to loss of hMLH1
expression [4]. We introduced a human chromosome 3 con-
taining a wild-type hMLH1 gene into the A2780/cp70 line
and showed restoration of Mlh1p expression, MMR activity
and partial restoration of cisplatin sensitivity (Table 2). We
also observed increased resistance of A2780/cp70 to doxoru-
bicin and the methylating agent N-nitrosomethylurea
(MNU) and restoration of sensitivity of the chromosome 3
transfers (Table 2). The restoration of drug sensitivities in
the A2780/cp70/ch3 line supports a direct role for MLH1 in
cell death induced by these drugs in these ovarian cells.
Furthermore, as shown in Table 2, A2780/cp70 cells, which
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(a) Cisplatin sensitivities of MMR mutants
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(b) Cisplatin sensitivities of rad52/MMR mutants
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(c)  Cisplatin sensitivities of rad1/MMR mutants
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Drug toxicity was measured by exposing exponentially growing cells in
liquid culture for 24 h to cisplatin, plating out 400 cells onto YPD
medium and allowing colony formation. Values shown are the means of
multiple independent experiments representing at least 15 repeat

values at each drug concentration and using independent clonal
isolates. Curves through data points represent second order linear
regression. Error bars represent 99% confidence limits.

Table 2

Drug sensitivities and SCE induction in ovarian tumour cell lines.

Cell line MMR IC50 IC50 IC50 Untreated* Cisplatin-treated*
status MNU (mM) Cisplatin (µM) Doxorubicin (nM)

Number of SCEs
per cell per chromosome per cell per chromosome

A2780 + 0.2 10 15 1.2 0.026 6.3 0.14
A2780/cp70 – 0.79 65 25 1.5 0.034 16.2 0.37
A2780/cp70/ch2 – 0.65 56 25 2.0 0.044 18.2 0.4
A2780/cp70/ch3 + 0.21 12 16 1.0 0.022 9.6 0.21

A2780/cp70/ch3 and A2780/cp70/ch2 are derivatives of
A2780/cp70 that have, respectively, chromosome 3 or 2 introduced
by microcell-mediated chromosome transfer. MMR status was
determined by in vitro assays using plasmid substrates with defined
mismatches (P. Karran and O. Humphries, personal communication).
Western analysis with hMlh1-specific antibodies (data not shown)
indicated that MMR+ lines express hMlh1, whereas MMR– lines do
not. IC50 values are the concentrations of MNU, cisplatin or
doxorubicin necessary to reduce the surviving fraction of cells by 50%.
Cells were treated with MNU after depletion of O6-alkyltransferase
activity using O6-benzylguanine, as previously described [4]. Values

are the mean of multiple independent clonogenic assays. A2780 and
A2780/cp70/ch3 are significantly more sensitive to MNU, cisplatin and
doxorubicin than A2780/cp70 and A2780/cp70/ch2 as determined by
two-tailed Student’s t-test (p < 0.01). *The number of SCEs in
exponentially growing cells that were either untreated or treated with
10 µM cisplatin for 1 h. SCEs were quantified by Hoechst staining,
followed by Giemsa staining of 5-bromo-2′-deoxyuridine (BrdU)-
labelled metaphase spreads. At least 40 metaphases were scored.
A2780 and A2780/cp70/ch3 have significantly less SCEs after
cisplatin treatment than A2780/cp70 and A2780/cp70/ch2, as
determined by two-tailed Student’s t-test (p < 0.01).



have lost Mlh1p expression, have a higher level of SCEs
induced by cisplatin than the MMR-proficient parental
A2780 line. Restoration of Mlh1p expression in the
A2780/cp70/ch3 line reduced the level of SCEs induced,
whereas introduction of chromosome 2 (A2780/cp70/ch2),
which does not restore MMR activity, had no effect. These
observations are consistent with a chromatid exchange
mechanism being modulated by MMR and with the
hypothesis that recombination bypass of cisplatin adducts
leads to damage tolerance in MMR-defective tumours.

The data presented in yeast and mammalian cells provide
evidence for MMR proteins directly affecting cytotoxicity
induced by cisplatin, carboplatin and doxorubicin.
Although loss of MMR is associated with methylation tol-
erance in mammalian cells, increased tolerance to methy-
lating agents has not been observed in yeast strains
defective in MMR genes, except for msh5 mutants [21].
This may imply that O6-methyl guanine induces toxicity
by a different mechanism or that this lesion is processed
by other repair pathways in yeast masking any effects of
MMR on sensitivity to methylating agents. The yeast
strains described in the present study will provide a means
to examine other anticancer agents and platinum ana-
logues for MMR-dependent cytotoxicity.
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Figure 2

Model of MMR modulation of recombination bypass affecting drug
sensitivity. Certain types of DNA damage induced by chemotherapeutic
drugs such as cisplatin are poorly repaired and may persist in the
genome. We propose that signals are generated during DNA replication
of this unrepaired damage that could lead to cell death, but have the
potential to be bypassed in a RAD52/RAD1-dependent manner that will
lead to damage tolerance and cell survival. This recombinational bypass
can be inhibited by MMR expression. Thus, loss of MMR leads to
increased drug resistance because of increased bypass.
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