230 research outputs found

    Functional Diversity of Small and Large Trees Along Secondary Succession in a Tropical Dry Forest

    Get PDF
    Functional Diversity is considered an important driver of community assembly in environmental and successional gradients. To understand tree assembly processes in a semideciduous tropical forest, we analyzed the variation of Functional Richness (FRic), Functional Divergence (FDiv), and Functional Evenness (FEve) of small vs. large trees in relation to fallow age after slash-and-burn agriculture and topographical position (flat sites vs. hills). FRic of small trees was lower than null model predicted values across the successional gradient, and decreased unexpectedly in older successional ages. FRic of large trees was higher than null model predictions early in succession and lower in late-successional stands on hills. Dominant species were more similar (low FDiv) in early and intermediate successional stands for small trees, and on hills for large trees, suggesting that species that are best adapted to harsh conditions share similar traits. We also found evidence of competitive exclusion among similar species (high FEve) for small trees in early successional stands. Overall, our results indicate that community assembly of small trees is strongly affected by the changing biotic and abiotic conditions along the successional and topographical gradient. For large trees, hills may represent the most stressful conditions in this landscape

    Effects of experimental lightgaps and topography on enrichment plantings in a central Amazonian secondary forest

    Get PDF
    Enrichment plantings into secondary forest are an important option in restoring species diversity and ecosystem services. However, little attention has been given to environmental requirements for species performance. This study evaluated the effects of lightgaps and topographic position on the growth and survival of four native tree species (Pouteria caimito, Garcinia macrophylla, Dipteryx odorata and Cynometra bauhiniaefolia) planted into a 26-year old secondary forest originating from abandoned pastures in the central Amazon Basin. Artificial lightgaps and control plots under closed canopy were uniformly distributed on plateaus and bottomlands near water bodies. Seedlings were planted randomly into the plots and monitored for 28 months. Seedling survival rate was high (93%) and did not differ among species. Overall, lightgaps produced a 38% increase in seedling height relative to the controls. Although the four species naturally occur in mature forest, two of the four grew significantly more in lightgaps than in dosed canopy secondary forest. Overall, bottomlands facilitated greater seedling growth in height (38%) relative to plateaus, but only one species exhibited a significant increase. This study shows the importance of the environmental variability generated with canopy openings along the topographic gradient, suggesting that both the selection of species and microsite conditions of planting sites have to be considered important criteria in the recovery of degraded areas

    Distribution's template estimate with Wasserstein metrics

    Get PDF
    In this paper we tackle the problem of comparing distributions of random variables and defining a mean pattern between a sample of random events. Using barycenters of measures in the Wasserstein space, we propose an iterative version as an estimation of the mean distribution. Moreover, when the distributions are a common measure warped by a centered random operator, then the barycenter enables to recover this distribution template

    Linking vegetation and soil functions during secondary forest succession in the Atlantic forest

    Get PDF
    Secondary forest succession can be an effective and low-cost strategy to increase forest cover and the associated biodiversity and soil functions. However, little is known about how soil functions develop during succession, and how vegetation attributes influence soil functions, especially in highly biodiverse and fragmented landscapes in the tropics. Here we assessed a wide range of indicators of taxonomic (e.g. number of tree species), structural (e.g. basal area, canopy openness) and functional diversity (e.g. community weighted means of functional traits) of tree species, as well as indicators for soil functions related to soil organic matter accumulation, nutrient cycling and soil cover in secondary forest patches ranging from 5 to 80 years. Two recently abandoned agricultural fields were included as the starting point of forest succession and two primary forest patches served as references for the end point of forest succession. Four ecological hypotheses, centred around the role of functional diversity, structural diversity and biomass, were tested to explore mechanisms in which forest vegetation may influence soil functions. Most measures of structural, taxonomic and functional diversity converged to values found in primary forests after 25–50 years of succession, whereas functional composition changed from acquisitive to conservative species. Soil carbon and nutrient cycling showed a quick recovery to the levels of primary forests after 15 years of succession. Although soil cover also increased during succession, levels of primary forests were not reached within 80 years. Variation in tree height and trait dominance were identified as aboveground drivers of carbon and nutrient cycling, while aboveground biomass was the main driver of litter accumulation, and the associated soil cover and water retention. Our results indicate that secondary forest succession can lead to a relative fast recovery of nutrient and carbon cycling functions, but not of soil cover. Our findings highlight the essential role of secondary forests in providing multiple ecosystem services. These results can be used to inform management and reforestation programmes targeted at strengthening soil functions, such as soil cover, nutrient and carbon cycling.Previo

    Distribution's template estimate with Wasserstein metrics

    Full text link
    In this paper we tackle the problem of comparing distributions of random variables and defining a mean pattern between a sample of random events. Using barycenters of measures in the Wasserstein space, we propose an iterative version as an estimation of the mean distribution. Moreover, when the distributions are a common measure warped by a centered random operator, then the barycenter enables to recover this distribution template

    Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks

    Get PDF
    Due to intensifying human disturbance, over half of the world's tropical forests are reforested or afforested secondary forests or plantations. Understanding the resilience of carbon (C) stocks in these forests, and estimating the extent to which they can provide equivalent carbon (C) sequestration and stabilization to the old growth forest they replace, is critical for the global C balance. In this study, we combined estimates of biomass C stocks with a detailed assessment of soil C pools in bare land, Eucalyptus plantation, secondary forest and natural old-growth forest after over 50 years of forest restoration in a degraded tropical region of South China. We used isotope studies, density fractionation and physical fractionation to determine the age and stability of soil C pools at different soil depths. After 52 years, the secondary forests had equivalent biomass C stocks to natural forest, whereas soil C stocks were still much higher in natural forest (97.42 t/ha) than in secondary forest (58.75 t/ha) or Eucalyptus plantation (38.99 t/ha) and lowest in bare land (19.9 t/ha). Analysis of δ13C values revealed that most of the C in the soil surface horizons in the secondary forest was new C, with a limited increase of more recalcitrant old C, and limited accumulation of C in deeper soil horizons. However, occlusion of C in microaggregates in the surface soil layer was similar across forested sites, which suggests that there is great potential for additional soil C sequestration and stabilization in the secondary forest and Eucalyptus plantation. Collectively, our results demonstrate that reforestation on degraded tropical land can restore biomass C and surface soil C stocks within a few decades, but much longer recovery times are needed to restore recalcitrant C pools and C stocks at depth. Repeated harvesting and disturbance in rotation plantations had a substantial negative impact on the recovery of soil C stocks. We suggest that current calculations of soil C in secondary tropical forests (e.g. IPCC Guidelines for National Greenhouse Gas Inventories) could overestimate soil C sequestration and stabilization levels in secondary forests and plantations

    Landscape metrics and indices : an overview of their use in landscape research

    Get PDF
    The aim of this overview paper is to analyze the use of various landscape metrics and landscape indices for the characterization of landscape structure and various processes at both landscape and ecosystem level. We analyzed the appearance of the terms landscape metrics/indexes/indices in combination with seven main categories in the field of landscape ecology [1) use/selection and misuse of metrics, 2) biodiversity and habitat analysis; 3) water quality; 4) evaluation of the landscape pattern and its change; 5) urban landscape pattern, road network; 6) aesthetics of landscape; 7) management, planning and monitoring] in the titles, abstracts and/or key words of research papers published in international peer-reviewed scientific journals indexed by the Institute of Science Information (ISI) Web of Science (WoS) from 1994 to October 2008. Most of the landscape metrics and indices are used concerning biodiversity and habitat analysis, and also the evaluation of landscape pattern and its change (up to 25 articles per year). There are only a few articles on the relationships of landscape metrics/indices/indexes to social aspects and landscape perception

    PENETRAČNÝ ODPOR PÔDY NA CELOROČNE VYUŽÍVANOM HORSKOM PASIENKU HOVÄDZÍM DOBYTKOM

    Get PDF
    In the year 2006 we investigated mechanical compaction of soil on the mountain pasture (altitude 920 m). Penetration resistance was researched on the compacted places, by cattle hoofs (breed Charolais), which were compared with unmanaged place after deforested. We investigated, that penetration resistant increasing with depth. However intensive increase of compaction was registered exclusively into certain depth. Soil compaction of unmanaged place and cutting - grazing place had high signifi cation of lower penetration resistant (MPa) to compare with place year-long used by grazing.V roku 2006 sme skúmali mechanické utlačenie pôdy na horskom pasienku (920 m n. m.). Penetračný odpor sme zisťovali na stanovištiach utlačených chodidlami hovädzieho dobytka (Charolais) a porovnávali sme ich s nevyužívanými plochami po odlesnení. Zistili sme, že penetračný odpor s hĺbkou rastie. Avšak intenzívny nárast utlačenia bol zaznamenaný iba do určitej hĺbky. Zhutnenie pôdy nevyužívanej plochy a plochy kosenej a pasenej dosahovalo vysoko preukazne nižší penetračný odpor v MPa v porovnaní s celoročne využívanou plochou pasením
    corecore