46 research outputs found

    Finite Element Analysis of the Mechanical Performances of 8 Marketed Aortic Stent-Grafts

    Get PDF
    International audiencePurpose: To assess numerically the flexibility and mechanical stresses undergone by stents and fabric of currently manufactured stent-grafts. Methods: Eight marketed stent-graft limbs (Aorfix, Anaconda, Endurant, Excluder, Talent, Zenith Flex, Zenith LP, and Zenith Spiral-Z) were modeled using finite element analysis. A numerical benchmark combining bending up to 180° and pressurization at 150 mmHg of the stent-grafts was performed. Stent-graft flexibility, assessed by the calculation of the luminal reduction rate, maximal stresses in stents, and maximal strains in fabric were assessed. Results: The luminal reduction rate at 90° was ‹<20% except for the Talent stent-graft. The rate at 180° was higher for Z-stented models (Talent, Endurant, Zenith, and Zenith LP; range 39%-78%) than spiral (Aorfix, Excluder, and Zenith Spiral-Z) or circular-stented (Anaconda) devices (range 14%-26%). At 180°, maximal stress was higher for Z-stented stent-grafts (range 370-622 MPa) than spiral or circular-stented endografts (range 177-368 MPa). At 90° and 180°, strains in fabric were low and did not differ significantly among the polyester stent-grafts (range 0.5%-7%), while the expanded polytetrafluoroethylene fabric of the Excluder stent-graft underwent higher strains (range 11%-18%). Conclusion: Stent design strongly influences mechanical performances of aortic stentgrafts. Spiral and circular stents provide greater flexibility, as well as lower stress values than Z-stents, and thus better durability

    The flower garden banks Siderastrea siderea coral as a candidate global boundary stratotype section and point for the Anthropocene series

    Get PDF
    The proposed Anthropocene Global Boundary Stratotype Section and Point (GSSP) candidate site of West Flower Garden Bank (27.8762°N, 93.8147°W) is an open ocean location in the Gulf of Mexico with a submerged coral reef and few direct human impacts. Corals contain highly accurate and precise (<±1 year) internal chronologies, similar to tree rings, and their exoskeletons are formed of aragonite and can be preserved in the rock record. Here we present results from a large Siderastrea siderea coral (core 05WFGB3; 1755–2005 CE) sampled with annual and monthly resolutions that show clear markers of global and regional human impacts. Atmospheric nuclear bomb testing by-products (14C, 239+240Pu) have clear increases in this coral starting in 1957 for 14C and the first increase in 1956 for 239+240Pu (potential bases for the Anthropocene GSSP). Coral δ13C declined especially after 1956 consistent with the Suess Effect resulting from the burning of fossil fuels. Coral skeletal δ15N starts to increase in 1963 corresponding with the increase in agricultural fertilizers. Coral Hg concentrations (1933–1980) loosely track fluctuations in industrial pollution and coral Ba/Ca increases from 1965–1983 when offshore oil operations expand after 1947. Coral temperature proxies contain the 20th-century global warming trend whereas coral growth declines during this interval

    Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique

    Get PDF
    The analyses of the stable isotope ratios of carbon (delta C-13), nitrogen (delta N-15), and oxygen (delta O-18) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore least likely to be affected by chemical alteration (i.e., its isotopic composition can be preserved over millions of years), making it an important and widely available archive for biologists and paleontologists. Here, we present the first combined measurements of delta C-13, delta N-15, and delta O-18 in enamel from the teeth of modern fauna (herbivores, carnivores, and omnivores) from the well-studied ecosystem of Gorongosa National Park (GNP) in central Mozambique. We use two novel methods to produce high-precision stable isotope enamel data: (i) the "oxidation-denitrification method," which permits the measurement of mineral-bound organic nitrogen in tooth enamel (delta N-15(enamel)), which until now, has not been possible due to enamel's low organic content, and (ii) the "cold trap method," which greatly reduces the sample size required for traditional measurements of inorganic delta C-13(enamel) and delta O-18(enamel) (from >= 0.5 to <= 0.1 mg), permitting analysis of small or valuable teeth and high-resolution serial sampling of enamel. The stable isotope results for GNP fauna reveal important ecological information about the trophic level, dietary niche, and resource consumption. delta N-15(enamel) values clearly differentiate trophic level (i.e., carnivore delta N-15(enamel) values are 4.0 parts per thousand higher, on average, than herbivores), delta C-13(enamel) values distinguish C-3 and/or C-4 biomass consumption, and delta O-18(enamel) values reflect local meteoric water (delta O-18(water)) in the park. Analysis of combined carbon, nitrogen, and oxygen stable isotope data permits geochemical separation of grazers, browsers, omnivores, and carnivores according to their isotopic niche, while mixed-feeding herbivores cannot be clearly distinguished from other dietary groups. These results confirm that combined C, N, and O isotope analyses of a single aliquot of tooth enamel can be used to reconstruct diet and trophic niches. Given its resistance to chemical alteration, the analysis of these three isotopes in tooth enamel has a high potential to open new avenues of research in (paleo)ecology and paleontology.info:eu-repo/semantics/publishedVersio

    Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: A descriptive analysis of the Eurobact II study

    Get PDF
    Background: The study aimed to describe the epidemiology and outcomes of hospital-acquired bloodstream infections (HABSIs) between COVID-19 and non-COVID-19 critically ill patients. Methods: We used data from the Eurobact II study, a prospective observational multicontinental cohort study on HABSI treated in ICU. For the current analysis, we selected centers that included both COVID-19 and non-COVID-19 critically ill patients. We performed descriptive statistics between COVID-19 and non-COVID-19 in terms of patients’ characteristics, source of infection and microorganism distribution. We studied the association between COVID-19 status and mortality using multivariable fragility Cox models. Results: A total of 53 centers from 19 countries over the 5 continents were eligible. Overall, 829 patients (median age 65 years [IQR 55; 74]; male, n = 538 [64.9%]) were treated for a HABSI. Included patients comprised 252 (30.4%) COVID-19 and 577 (69.6%) non-COVID-19 patients. The time interval between hospital admission and HABSI was similar between both groups. Respiratory sources (40.1 vs. 26.0%, p < 0.0001) and primary HABSI (25.4% vs. 17.2%, p = 0.006) were more frequent in COVID-19 patients. COVID-19 patients had more often enterococcal (20.5% vs. 9%) and Acinetobacter spp. (18.8% vs. 13.6%) HABSIs. Bacteremic COVID-19 patients had an increased mortality hazard ratio (HR) versus non-COVID-19 patients (HR 1.91, 95% CI 1.49–2.45). Conclusions: We showed that the epidemiology of HABSI differed between COVID-19 and non-COVID-19 patients. Enterococcal HABSI predominated in COVID-19 patients. COVID-19 patients with HABSI had elevated risk of mortality. Trial registration ClinicalTrials.org number NCT03937245. Registered 3 May 2019

    Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique

    Get PDF
    The analyses of the stable isotope ratios of carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore least likely to be affected by chemical alteration (i.e., its isotopic composition can be preserved over millions of years), making it an important and widely available archive for biologists and paleontologists. Here, we present the first combined measurements of δ13C, δ15N, and δ18O in enamel from the teeth of modern fauna (herbivores, carnivores, and omnivores) from the well-studied ecosystem of Gorongosa National Park (GNP) in central Mozambique. We use two novel methods to produce high-precision stable isotope enamel data: (i) the “oxidation-denitrification method,” which permits the measurement of mineral-bound organic nitrogen in tooth enamel (δ15Nenamel), which until now, has not been possible due to enamel’s low organic content, and (ii) the “cold trap method,” which greatly reduces the sample size required for traditional measurements of inorganic δ13Cenamel and δ18Oenamel (from ≥0.5 to ≤0.1 mg), permitting analysis of small or valuable teeth and high-resolution serial sampling of enamel. The stable isotope results for GNP fauna reveal important ecological information about the trophic level, dietary niche, and resource consumption. δ15Nenamel values clearly differentiate trophic level (i.e., carnivore δ15Nenamel values are 4.0‰ higher, on average, than herbivores), δ13Cenamel values distinguish C3 and/or C4 biomass consumption, and δ18Oenamel values reflect local meteoric water (δ18Owater) in the park. Analysis of combined carbon, nitrogen, and oxygen stable isotope data permits geochemical separation of grazers, browsers, omnivores, and carnivores according to their isotopic niche, while mixed-feeding herbivores cannot be clearly distinguished from other dietary groups. These results confirm that combined C, N, and O isotope analyses of a single aliquot of tooth enamel can be used to reconstruct diet and trophic niches. Given its resistance to chemical alteration, the analysis of these three isotopes in tooth enamel has a high potential to open new avenues of research in (paleo)ecology and paleontology

    Variabilité climatique de deux périodes clés de l'Holocène, c. 7000-6000 et 3500-2500 années BP, dans le Pacifique Sud-Ouest à partir de l'analyse d'archives bio-carbonatées.

    Get PDF
    This study aims to document the climate for two key periods of the Holocene from biocarbonated archives. The giant clam Tridacna maxima was validated as a paleoclimatic archive. Fossil specimens of this species were used to document the climatic variability in the Southwest Pacific during the early mid-Holocene - 7.0-6.0 ka BP - and during the Lapita migration over Remote Oceania - 3.5-2.5 ka BP - in addition to δ18O records from fossils specimens of giant clams T. gigas, Hippopus hippopus and fossils massive coral Porites sp. Records of Sr/Ca from Porites sp. corals also provided paleo-SST records. The post glacial SST rise was completed at 7.0-6.0 ka BP and the southeastern edge of the WPWP was located in its current location. At that time the seasonal influence of the SPCZ over the SW Pacific was weaker than it is today as a result of the more northerly location of this structure. The El Niño Southern Oscillation (ENSO) variability was 20-30% weaker than today. The period when the Lapita culture at 3.6-3.4 ka BP, was characterized by a La Niña-like climatic mean state in the SW Pacific. The Lapita migration-phase at 3.2-2.7 ka BP is coincidental with a strong ENSO variability supporting that the climate had a significant role in the Lapita migration. Indeed, unstable climate may have triggered and/or promoted the development and the expansion of nomad foraging population based on marine resources as the Lapita were.Cette étude a pour but de documenter le climat à deux périodes clés de l'Holocène à partir d'archives biocarbonatées. Le potentiel du bénitier Tridacna maxima (géochimie et croissance) comme archive paléoclimatique a été montré. Des spécimens fossiles de cette espèce ont ensuite été utilisés pour documenter la variabilité climatique du Pacifique Sud-Ouest durant la transition Holocène inférieur-Holocène moyen (7.0-6.0 ka BP) et lors de la migration Lapita en Océanie Lointaine (3.5-2.5 ka BP) en complément d'enregistrements issus d'autres bénitiers et d'un corail massif Porites sp. Des enregistrements Sr/Ca de Porites sp. ont aussi été utilisés comme paléothermomètre. A 7.0-6.0 ka BP, la phase de réchauffement postglaciaire était terminée et la marge sud-est de la Warm Pool était dans sa position actuelle. L'influence saisonnière de la SPCZ était plus faible qu'actuellement dans le Pacifique S.O., montrant que la SPCZ était située au nord de sa position actuelle. La variabilité El Niño Southern Oscillation (ENSO) était réduite de 20-30% par rapport à la variabilité actuelle. La période coincidant avec l'émergence de la culture Lapita, 3.6-3.4 ka BP, est caractérisée par un état moyen de type La Niña sur le Pacifique S.O avec une forte variabilité ENSO. Le climat a donc pu agir comme déclencheur et/ou favoriser la migration Lapita à 3.2-2.7 ka BP. En effet, des conditions climatiques instables peuvent favoriser le développement et l'expansion de populations nomades dépendantes des ressources marines, comme l'était la population Lapita

    Digital correction of computed X-radiographs for coral densitometry

    No full text
    International audienceThe recent increase in sea surface temperature and ocean acidification raises major concerns about the evolution of the coral calcification rate. Digitized X-radiographs have been used for coral skeleton density measurements since the 1980s. The main limitation of coral densitometry from digitized X-radiographs is the X-ray intensity heterogeneity due to spherical spreading (inverse square law) and heel effect. Until now, extra X-ray images or aluminium standards have been used to correct X-radiographs. However, such corrective methods may be constraining when working with a high number of coral samples. Here, we present an inexpensive, straightforward, and accurate digital detrending (DD) method to correct the heterogeneities of the X-ray irradiation that affect X-radiographs. The X-radiograph is corrected against the irradiation imprint recorded by its own background using a kriging interpolation method, thus allowing reliable optical density measurements directly on the corrected X-ray image. This digital detrending (DD) method was validated using skeletal bulk density measurements and computerized tomography (CT). Coral densitometry using DD corrected X-radiographs does not require the destruction of the coral sample and provides high-resolution measurements. Since DD does not require extra aluminium standards to correct X-radiographs, this method optimizes the working space available on the X-ray image. Moreover, it corrects the entire X-radiograph, thus larger samples or numerous samples can be X-rayed at the same time
    corecore