881 research outputs found

    Análise da comercialização e consumo de cogumelos comestíveis no mercado do Distrito Federal e entorno.

    Get PDF
    bitstream/CENARGEN/24692/1/bp048.pd

    Triplet superconducting pairing and density-wave instabilities in organic conductors

    Full text link
    Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations and both intrachain and interchain repulsive interactions. We find a close proximity of spin-density- and charge-density-wave phases, singlet d-wave and triplet f-wave superconducting phases. There is a striking correspondence between our results and recent puzzling experimental findings in the Bechgaard salts, including the coexistence of spin-density-wave and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.Comment: 4 pages, 5 eps figure

    Millennial-scale climatic variability between 340000 and 270000 years ago in SW Europe : evidence from a NW Iberian margin pollen sequence

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Climate of the Past 5 (2009): 53-72, doi:10.5194/cp-5-53-2009We present a new high-resolution marine pollen record from NW Iberian margin sediments (core MD03-2697) covering the interval between 340 000 and 270 000 years ago, a time period centred on Marine Isotope Stage (MIS) 9 and characterized by particular baseline climate states. This study enables the documentation of vegetation changes in the north-western Iberian Peninsula and therefore the terrestrial climatic variability at orbital and in particular at millennial scales during MIS 9, directly on a marine stratigraphy. Suborbital vegetation changes in NW Iberia in response to cool/cold events are detected throughout the studied interval even during MIS 9e ice volume minimum. However, they appear more frequent and of higher amplitude during the 30 000 years following the MIS 9e interglacial period and during the MIS 9a-8 transition, which correspond to intervals of an intermediate to high ice volume and mainly periods of ice growth. Each suborbital cold event detected in NW Iberia has a counterpart in the Southern Iberian margin SST record. High to moderate amplitude cold episodes detected on land and in the ocean appear to be related to changes in deep water circulation and probably to iceberg discharges at least during MIS 9d, the mid-MIS 9c cold event and MIS 9b. This work provides therefore additional evidence of pervasive millennial-scale climatic variability in the North Atlantic borderlands throughout past climatic cycles of the Late Pleistocene, regardless of glacial state. However, ice volume might have an indirect influence on the amplitude of the millennial climatic changes in Southern Europe.This research was supported by IPEV (Institut Paul Emile Victor), PNEDC (Programme National d’Etude de la Dynamique du Climat), the Gary Comer Science and Education Foundation and the US National Science Foundation (OCE grants 8-4911100 and 8-256500)

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Mechanical tuning of the evaporation rate of liquid on crossed fibers

    Full text link
    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate depends significantly on the liquid morphology and that the drying of liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology towards the column state, and so enhances the drying rate of a volatile liquid deposited on it

    Role of Interchain Hopping in the Magnetic Susceptibility of Quasi-One-Dimensional Electron Systems

    Full text link
    The role of interchain hopping in quasi-one-dimensional (Q-1D) electron systems is investigated by extending the Kadanoff-Wilson renormalization group of one-dimensional (1D) systems to Q-1D systems. This scheme is applied to the extended Hubbard model to calculate the temperature (TT) dependence of the magnetic susceptibility, χ(T)\chi (T). The calculation is performed by taking into account not only the logarithmic Cooper and Peierls channels, but also the non-logarithmic Landau and finite momentum Cooper channels, which give relevant contributions to the uniform response at finite temperatures. It is shown that the interchain hopping, t⊥t_\perp, reduces χ(T)\chi (T) at low temperatures, while it enhances χ(T)\chi(T) at high temperatures. This notable t⊥t_\perp dependence is ascribed to the fact that t⊥t_\perp enhances the antiferromagnetic spin fluctuation at low temperatures, while it suppresses the 1D fluctuation at high temperatures. The result is at variance with the random-phase-approximation approach, which predicts an enhancement of χ(T)\chi (T) by t⊥t_\perp over the whole temperature range. The influence of both the long-range repulsion and the nesting deviations on χ(T)\chi (T) is further investigated. We discuss the present results in connection with the data of χ(T)\chi (T) in the (TMTTF)2X_2X and (TMTSF)2X_2X series of Q-1D organic conductors, and propose a theoretical prediction for the effect of pressure on magnetic susceptibility.Comment: 17 pages, 19figure

    Mechanism for the Singlet to Triplet Superconductivity Crossover in Quasi-One-Dimensional Organic Conductors

    Full text link
    Superconductivity of quasi-one-dimensional organic conductors with a quarter-filled band is investigated using the two-loop renormalization group approach to the extended Hubbard model for which both the single electron hopping t_{\perp} and the repulsive interaction V_{\perp} perpendicular to the chains are included. For a four-patches Fermi surface with deviations to perfect nesting, we calculate the response functions for the dominant fluctuations and possible superconducting states. By increasing V_{\perp}, it is shown that a d-wave (singlet) to f-wave (triplet) superconducting state crossover occurs, and is followed by a vanishing spin gap. Furthermore, we study the influence of a magnetic field through the Zeeman coupling, from which a triplet superconducting state is found to emerge.Comment: 11 pages, 15 figures, published versio
    • …
    corecore