370 research outputs found

    Enhancement of shot noise due to the fluctuation of Coulomb interaction

    Get PDF
    We have developed a theoretical formalism to investigate the contribution of fluctuation of Coulomb interaction to the shot noise based on Keldysh non-equilibrium Green's function method. We have applied our theory to study the behavior of dc shot noise of atomic junctions using the method of nonequilibrium Green's function combined with the density functional theory (NEGF-DFT). In particular, for atomic carbon wire consisting 4 carbon atoms in contact with two Al(100) electrodes, first principles calculation within NEGF-DFT formalism shows a negative differential resistance (NDR) region in I-V curve at finite bias due to the effective band bottom of the Al lead. We have calculated the shot noise spectrum using the conventional gauge invariant transport theory with Coulomb interaction considered explicitly on the Hartree level along with exchange and correlation effect. Although the Fano factor is enhanced from 0.6 to 0.8 in the NDR region, the expected super-Poissonian behavior in the NDR regionis not observed. When the fluctuation of Coulomb interaction is included in the shot noise, our numerical results show that the Fano factor is greater than one in the NDR region indicating a super-Poissonian behavior

    RESEARCH ON EFFICIENT INDEXING OF LARGE-SCALE GEOSPATIAL DATA BASED ON MULTI-LEVEL GEOGRAPHIC GRID

    Get PDF
    With the implementation of unified natural resource management in China, national geographic conditions monitoring data have been identified as fundamental data for natural resource survey and monitoring. The efficiency of information extraction from massive spatio-temporal data to support natural resource management has emerged as a critical indicator for maximizing the value of geographic conditions monitoring data and enhancing data-driven decision management. Traditional spatial indices are computationally intensive, and when confronted with immense data volume or uneven data scale, issues such as extensive index computations and poor scale adaptability arise, impeding the efficient retrieval of complex geospatial data. In response to the need for efficient indexing of massive geospatial monitoring data at a scale of 100 million, a multi-level geographic spatial index framework based on geographic grids is proposed. Within the geographic conditions spatio-temporal database, a three-level spatial index of "zone-grid-space" is constructed, utilizing massive land cover data for analysis and testing. The results demonstrate that the multi-level spatial index method exhibits excellent scale adaptability, and grid coding dimensionality reduction and numerical operations effectively reduce the computational load of spatial retrievals of complex vector patches. This method significantly improves the retrieval efficiency of large-scale national geographic conditions data, providing an efficient technique for lightweight information extraction of large-scale monitoring geospatial data within spatial computing systems. The method holds reference value for on-demand retrieval, analysis, and decision-making of natural resource spatio-temporal big data

    Electronic structure investigation of CeB6 by means of soft X-ray scattering

    Full text link
    The electronic structure of the heavy fermion compound CeB6 is probed by resonant inelastic soft X-ray scattering using photon energies across the Ce 3d and 4d absorption edges. The hybridization between the localized 4f orbitals and the delocalized valence-band states is studied by identifying the different spectral contributions from inelastic Raman scattering and normal fluorescence. Pronounced energy-loss structures are observed below the elastic peak at both the 3d and 4d thresholds. The origin and character of the inelastic scattering structures are discussed in terms of charge-transfer excitations in connection to the dipole allowed transitions with 4f character. Calculations within the single impurity Anderson model with full multiplet effects are found to yield consistent spectral functions to the experimental data.Comment: 9 pages, 4 figures, 1 table, http://link.aps.org/doi/10.1103/PhysRevB.63.07510

    Auger Effect in the High-Resolution Ce 3d-edge Resonant Photoemission

    Full text link
    The bulk-sensitive Ce 4ff spectral weights of various Ce compounds including CeFe2_2, CeNi2_2, and CeSi2_2 were obtained with the resonant photoemission technique at the Ce 3d-edge. We found the lineshapes change significantly with the small change of the incident photon energy. Detailed analysis showed that this phenomenon results primarily from the Auger transition between different multiplet states of the Ce 3d5/2‾4f2\underline{3d_{5/2}}4f^2 (bar denotes a hole) electronic configuration in the intermediate state of the resonant process. This tells us that extra care should be taken for the choice of the resonant photon energy when extracting Ce 4ff spectral weights from the Ce 3dd-edge resonant photoemission spectra. The absorption energy corresponding to the lowest multiplet structure of the Ce 3d5/2‾4f2\underline{3d_{5/2}}4f^2 configuration seems to be the logical choice.Comment: 13 pages, 5 figures, submitted to Phys. Rev.

    A ternary PEDOT-TiO2-reduced graphene oxide nanocomposite for supercapacitor applications

    Get PDF
    A ternary composite of PEDOT was prepared with TiO2 via emulsion polymerization method adjusting various weight ratios of TiO2 to PEDOT and synthesized rGO was then blended with this composite. The FTIR, UV–Vis and XRD analysis displayed characteristic features of PEDOT and TiO2. The morphology of the nano-hybrid structure was additionally investigated by SEM analysis. Pore size and surface area analysis of particles were characterized by BET method. The electrochemical analysis showed that the specific capacitance (Csp) for PEDOT-TiO2-15-rGO was 18.9 F.cm-2 at 0.1 mA g-1 current density

    GROWTH on S190510g: DECam Observation Planning and Follow-Up of a Distant Binary Neutron Star Merger Candidate

    Get PDF
    The first two months of the third Advanced LIGO and Virgo observing run (2019 April–May) showed that distant gravitational-wave (GW) events can now be readily detected. Three candidate mergers containing neutron stars (NS) were reported in a span of 15 days, all likely located more than 100 Mpc away. However, distant events such as the three new NS mergers are likely to be coarsely localized, which highlights the importance of facilities and scheduling systems that enable deep observations over hundreds to thousands of square degrees to detect the electromagnetic counterparts. On 2019 May 10 02:59:39.292 UT the GW candidate S190510g was discovered and initially classified as a binary neutron star (BNS) merger with 98% probability. The GW event was localized within an area of 3462 deg^2, later refined to 1166 deg^2 (90%) at a distance of 227 ± 92 Mpc. We triggered Target-of-Opportunity observations with the Dark Energy Camera (DECam), a wide-field optical imager mounted at the prime focus of the 4 m Blanco Telescope at Cerro Tololo Inter-American Observatory in Chile. This Letter describes our DECam observations and our real-time analysis results, focusing in particular on the design and implementation of the observing strategy. Within 24 hr of the merger time, we observed 65% of the total enclosed probability of the final skymap with an observing efficiency of 94%. We identified and publicly announced 13 candidate counterparts. S190510g was reclassified 1.7 days after the merger, after our observations were completed, with a "BNS merger" probability reduced from 98% to 42% in favor of a "terrestrial classification

    Axial Concentration Profiles and NO Flue Gas in a Pilot-Scale Bubbling Fluidized Bed Coal Combustor

    Get PDF
    Atmospheric bubbling fluidized bed coal combustion of a bituminous coal and anthracite with particle diameters in the range 500-4000 ím was investigated in a pilot-plant facility. The experiments were conducted at steady-state conditions using three excess air levels (10, 25, and 50%) and bed temperatures in the 750-900 °C range. Combustion air was staged, with primary air accounting for 100, 80, and 60% of total combustion air. For both types of coal, high NO concentrations were found inside the bed. In general, the NO concentration decreased monotonically along the freeboard and toward the exit flue; however, during combustion with high air staging and low to moderate excess air, a significant additional NO formation occurred near the secondary air injection point. The results show that the bed temperature increase does not affect the NO flue gas concentration significantly. There is a positive correlation between excess air and the NO flue gas concentration. The air staging operation is very effective in lowering the NO flue gas, but there is a limit for the first stage stoichiometry below which the NO flue gas starts rising again. This effect could be related with the coal rank

    Humanized Mice Recapitulate Key Features of HIV-1 Infection: A Novel Concept Using Long-Acting Anti-Retroviral Drugs for Treating HIV-1

    Get PDF
    BACKGROUND: Humanized mice generate a lymphoid system of human origin subsequent to transplantation of human CD34+ cells and thus are highly susceptible to HIV infection. Here we examined the efficacy of antiretroviral treatment (ART) when added to food pellets, and of long-acting (LA) antiretroviral compounds, either as monotherapy or in combination. These studies shall be inspiring for establishing a gold standard of ART, which is easy to administer and well supported by the mice, and for subsequent studies such as latency. Furthermore, they should disclose whether viral breakthrough and emergence of resistance occurs similar as in HIV-infected patients when ART is insufficient. METHODS/PRINCIPAL FINDINGS: NOD/shi-scid/γ(c)null (NOG) mice were used in all experimentations. We first performed pharmacokinetic studies of the drugs used, either added to food pellets (AZT, TDF, 3TC, RTV) or in a LA formulation that permitted once weekly subcutaneous administration (TMC278: non-nucleoside reverse transcriptase inhibitor, TMC181: protease inhibitor). A combination of 3TC, TDF and TMC278-LA or 3TC, TDF, TMC278-LA and TMC181-LA suppressed the viral load to undetectable levels in 15/19 (79%) and 14/14 (100%) mice, respectively. In successfully treated mice, subsequent monotherapy with TMC278-LA resulted in viral breakthrough; in contrast, the two LA compounds together prevented viral breakthrough. Resistance mutations matched the mutations most commonly observed in HIV patients failing therapy. Importantly, viral rebound after interruption of ART, presence of HIV DNA in successfully treated mice and in vitro reactivation of early HIV transcripts point to an existing latent HIV reservoir. CONCLUSIONS/SIGNIFICANCE: This report is a unique description of multiple aspects of HIV infection in humanized mice that comprised efficacy testing of various treatment regimens, including LA compounds, resistance mutation analysis as well as viral rebound after treatment interruption. Humanized mice will be highly valuable for exploring the antiviral potency of new compounds or compounds targeting the latent HIV reservoir

    Genotype V Japanese Encephalitis Virus Is Emerging

    Get PDF
    Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I–IV. It reveals low similarity between XZ0934 and genotype I–IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic
    • …
    corecore