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ABSTRACT: 

With the implementation of unified natural resource management in China, national geographic conditions monitoring data have been 
identified as fundamental data for natural resource survey and monitoring. The efficiency of information extraction from massive 
spatio-temporal data to support natural resource management has emerged as a critical indicator for maximizing the value of geographic 
conditions monitoring data and enhancing data-driven decision management. Traditional spatial indices are computationally intensive, 
and when confronted with immense data volume or uneven data scale, issues such as extensive index computations and poor scale 
adaptability arise, impeding the efficient retrieval of complex geospatial data. In response to the need for efficient indexing of massive 
geospatial monitoring data at a scale of 100 million, a multi-level geographic spatial index framework based on geographic grids is 
proposed. Within the geographic conditions spatio-temporal database, a three-level spatial index of "zone-grid-space" is constructed, 
utilizing massive land cover data for analysis and testing. The results demonstrate that the multi-level spatial index method exhibits 
excellent scale adaptability, and grid coding dimensionality reduction and numerical operations effectively reduce the computational 
load of spatial retrievals of complex vector patches. This method significantly improves the retrieval efficiency of large-scale national 
geographic conditions data, providing an efficient technique for lightweight information extraction of large-scale monitoring geospatial 
data within spatial computing systems. The method holds reference value for on-demand retrieval, analysis, and decision-making of 
natural resource spatio-temporal big data. 

1. INTRODUCTION

Following the successful completion of the first national 
geographic conditions survey in China, annual full-coverage, 
large-scale time series data of national geographic conditions 
have been generated since 2016, leading to the establishment of 
a national spatio-temporal information database (Gao et al. 2018; 
LI et al. 2016a; Wenzhong et al. 2017). Based on large-scale 
cloud storage and spatial database facilities, efficient storage and 
management of national geographic conditions monitoring data 
at a scale of 100 million has been realized. Distributed storage 
and online maps-based vector rendering are used to solve the 
problems of spatial data management, scheduling and dynamic 
browsing, providing strong support for national geographic 
conditions data management and online information services. 

As the geographic conditions monitoring becomes integrated into 
the national natural resources investigation and monitoring 
system since 2018, the refined land cover data as the basic 
geographic conditions data is being directly applied in numerous 
natural resource supervision cases and the approval of basic 
farmland(Jiping et al. 2019). This highlights the fundamental 
value of geographic conditions monitoring data in natural 
resource management, analysis, and decision-making. However, 
the information service and decision computing capabilities of 
geographic conditions monitoring data are facing new demands 
within this new context of transitioning from indirect to direct 
service. The efficiency of information extraction to meet the 
requirements of natural resource management has become a key 
aspect to effectively utilize the geographic conditions monitoring 
data and improve the ability of information service and support. 

The earth irregularity and spatial representation system based on 
Euclidean space and map projection will face the problems of 

discontinuous spatial representation and complex spatial 
computation in the case of large-scale spatial data(Béjar et al. 
2023; Bondaruk et al. 2020; LI et al. 2010; Sahr et al. 2003). In 
order to support efficient geospatial data management, spatial 
indices, represented by B-tree, R-tree, and quadtree, have 
emerged as core technologies in various geospatial databases, 
playing an irreplaceable role in mainstream, mature geographic 
conditions database solutions(Li et al. 2016b; Yao and Li 2018). 

Well-known open-source suites, such as PostGIS, implement 
spatial indices through R-tree or GIST tree indices (supporting 
geohash and projection), which transform PostgreSQL into a 
powerful spatial database with efficient spatial data management, 
quantity measurement, and topology analysis capabilities(Obe 
and Hsu 2021). MyISAM, the storage engine for the open-source 
MySQL database, has long supported spatial indexing based on 
R-tree indexing. The powerful InnoDB engine began supporting
spatial indexing after version 5.7.4 labs, significantly improving
spatial data management capabilities(Piórkowski 2011). Oracle,
a prominent commercial database, has implemented R-tree,
quadtree, and other spatial indices within the Oracle Spatial
geospatial suite, accumulating years of expertise in spatial data
storage and management. In addition, the development of Spatial
and GeoRaster spatial functions and geometric operators has
been fully advanced since the Oracle 12c version, which is
committed to promoting comprehensive commercial geospatial
database solutions(Bach 2014).

It is well known that index computation based on geospatial data 
has the characteristics of intensive computation(Park 2014; 
Wang et al. 2015; Yao et al. 2019). With the development of 
Earth observation technology, geospatial big data presents the 
characteristics of rapid expansion of data volume and 
diversification of spatial scale. A single type of spatial index has 
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more and more problems such as large amount of coordinate 
computation and poor scale adaptability, which gradually cannot 
meet the needs of rapid extraction and service of large-scale 
geospatial information(Bondaruk et al. 2020; Li et al. 2019). 
Geographic grids take the Earth as a whole into consideration, 
employing regular grids or cells to express Earth's space 
continuously and seamlessly, with each grid or cell representing 
the spatial range or position of the region it occupies. Grid coding 
algorithms transform spatial grids or cells into numerical codes, 
substituting complex spatial computations with simple coding 
operations. Consequently, on-demand location expression, 
spatial correlation, and statistical analysis can be realized in 
geographic space, ultimately achieving dimensionality reduction 
of spatial expression and simplifying spatial computation(Qian et 
al. 2019; Wang et al. 2020). 

Internationally, geographic grids that have attracted widespread 
attention encompass the United States National Grid (USNG), 
the British National Grid Reference (BNGR), among others 
(Authority 2000; Cao et al. 2022; Yao et al. 2019). The US 
Military Grid Reference System (MGRS) and the Global Area 
Reference System (GARS) have been employed as global 
location coding standards for the US military to fulfill the 
requirements of cooperative operation of combat systems and 
command organizations(Sanjeewa 2016). In the civilian sector, 
innovations in the Internet economy, spearheaded by Google 
Earth, have adopted multi-tier tile grids to standardize global 
massive remote sensing image data and streamline online 
services, thereby popularizing geographic conditions services 
and becoming the Internet map service standard. To enhance grid 
segmentation expression accuracy, Google introduced the 
Google S2 spherical segmentation algorithm, which leverages 
the more universal Hilbert curve space-filling algorithm in 
multidimensional space expression(Kmoch et al. 2022). This 
algorithm has been extensively applied in Internet location 
services such as Google Maps search and Uber taxi proximity 
search, leading the advancement of location coding and Internet 
services development, and gaining adoption in an increasing 
number of fields. 

In China, numerous expert teams from institutions, including the 
Chinese Academy of Sciences, Peking University, Wuhan 
University, and China University of Mining and Technology, 
have proposed various grid systems featuring unique 
characteristics for diverse fields and perspectives. Practical 
progress has been made in grid systems such as GeoSOT, SDOG, 
S3G, DOG, HQBS, and others, some of which have been 
validated and applied in professional fields like national public 
security, navigation and positioning, postal logistics, disaster 
reduction, and land management (Bondaruk et al. 2020; Jieqing 
et al. 2016; Qian et al. 2019). With the rapid development of new 
services such as earth observation, location service and sharing 
economy, grid information service has gradually transitioned 
from professional application to popular service. Internet 
services such as location search, shared bikes, etc., adopt the Z-
curve hashing binary idea to carry out multilevel finite binary 
coding of geographical latitude and longitude coordinates, which 
solves the problem of near-real-time location expression and 
adjacent search of massive space points, and achieves good 
application results, indicating that geographic grid has good 
application potential in spatial big data retrieval(Bondaruk et al. 
2020; Cao et al. 2022; Kmoch et al. 2022). 

In response to this new demand in the era of spatio-temporal big 
data, international standards organizations and research 
institutions have formulated relevant standards for geographic 
grids. For example, the Open Geospatial Consortium (OGC) 

released the Discrete Global Grid System (DGGS) standard, 
which provides a framework for dividing the Earth's surface into 
layered tessellation of grid cells(Peterson 2016). National 
Geomatics Center of China and other research institutions have 
also jointly formulated national standards for China's geospatial 
grid, striving to create unified and standardized geospatial grid 
standards from the implementation level, realize multi-level 
standardized grid division of geospatial, and provide a unified 
standardized grid framework(Standardization 2009). This work 
has important practical value to promote the development of 
geographical grid from research to application in the new era. 

In response to the demand for efficient indexing of massive 
geospatial monitoring data, this study presents a large-scale 
geospatial data indexing framework based on a multi-level 
geographic grid. The research investigates efficient index 
technologies for massive data, employing a typical grid algorithm, 
and concentrates on current practical challenges, such as multi-
level index architecture, grid index efficiency, and multi-scale 
adaptability. National-scale land cover data is utilized for 
experimental analysis and performance verification, with the aim 
of providing technical support to enhance the indexing efficiency 
of large-scale geospatial data and facilitate natural resource 
management. 

2. GENERAL FRAMEWORK

2.1 Efficient Indexing of Multi-scale Grid Encoding Model 

Land cover data is one of the core achievements of geographic 
national conditions monitoring, characterized by comprehensive 
coverage, diverse types, fine patches, objective information, and 
strong timeliness (Pandey et al. 2021). It has unique advantages 
in supporting resource surveys, ecological protection, spatial 
planning, urban management, and macro decision-making. From 
the perspective of spatial computation and information extraction, 
land cover data indexing mainly faces three bottlenecks. 

2.1.1 Wide range and large data volume: A single data layer of 
land cover seamlessly covers China's land territory, with a broad 
spatial distribution range, over 260 million patches in a single 
data layer, and data volume exceeding 300GB. Any spatial 
retrieval requires spatial computation of 260 million patches 
across the national land area, posing management, scheduling, 
and computational challenges that far exceed the supporting 
capacity of traditional centralized database systems. 

2.1.2 Complex patches and large computational workload: 
Land cover patches were collected for the first time based on 
aerial photography and satellite imagery with resolutions better 
than 1 meter across the country, including seven provinces with 
resolutions better than 0.5 meters. The rich data sources resulted 
in accurate and complex boundaries of land cover patches, with 
complex patches such as woodland, grassland, and sandy land 
having as many as 100,000 nodes, and road and water systems 
having dozens of inner loops within a single patch. Conventional 
spatial computations and relationship discernments often require 
complex computations.  
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2.1.3 Varying scales and indexing challenges: Land cover data 
divides the entire surface into 86 detailed classes, with a single 
land class collection index refined to a minimum field of 200 
square meters. Situations where small patches of 200 square 
meters, such as buildings and artificial facilities, coexist with 
large patches spanning multiple square kilometers, such as 
deserts and water surfaces, are common. The scale disparity 
between patches makes traditional single spatial indexing 
unsuitable for all granularity patches. 

2.2 Efficient Indexing Framework 

Traditional spatial indexing focuses on designing indices for 
individual spatial elements. When supporting the spatial indexing 
and computation of the aforementioned land cover data, it 
presents significant limitations, such as high scanning costs for 
large volumes, complex patch computations, and imbalanced 
computation due to scale differences. To address these issues, a 
discrete and lightweight multi-level spatial indexing framework 
has been proposed, incorporating "storage separation-logical 
coupling, lightweight matching-spatial filtering, spatial 
indexing-precise computation" to reduce data volume and 
simplify computational complexity, as shown in Table 1. 

Spatial 
level 

Indexing 
Target 

Indexing Method 

Large-
scale 

Divide and 
conquer to 
reduce data 
volume 

Employ various separation 
strategies, such as distributed 
storage and partitioned storage, 
to physically separate massive 
nationwide data according to 
spatial range, enabling a divide-
and-conquer approach for 
massive data. Spatial retrieval 
scope is narrowed from a global 
to a local scale, eliminating a 
large number of irrelevant unit 
data, reducing the target data 
volume from nationwide to 
spatially relevant data units, and 
significantly lowering the 
national data volume. 

Medium-
scale 

Lightweight 
indexing for 
rapid data 
filtering 

Use lightweight indexing 
methods, such as geographic 
grid encoding, to quickly 
perform spatial matching and 
data filtering within a certain 
error range, excluding a large 
number of irrelevant data 
records within the target unit. 
The target data is rapidly 
narrowed down to the relevant 
range within the target grid, 
greatly reducing the spatial 
computational cost of precise 
data filtering. 

Small-
scale 

Precise 
computation 
to extract 
accurate 
results 

Adopt spatial indexing and 
precise spatial data discernment 
methods, such as spatial 
computation, to eliminate a 
small amount of data within the 
grid computation error range in 
a limited target data scope. 
Obtain the final spatial retrieval 
results. 

2.3 Multi-level Indexing Model 

Based on the multi-level indexing framework and the objective 
situation of national land cover data, a three-level indexing 
method, "partition-grid-space," is proposed to gradually narrow 
down the indexing scope during indexing, avoiding the 
inefficiency caused by single-level indexing of the entire data set 
and effectively improving the retrieval efficiency of spatial data. 
The structure of the multi-level grid indexing model is shown in 
Figure 1. 

Spatial computation scope

Data partition A Data partition B Data partition N

Geographic 
grid B

Spatial index Spatial index Spatial index

Spatial computation result

Geographic 
grid A

Geographic 
grid N

Partition index

……

……

Grid index

2.3.1 Partition: Geographic national condition information 
extraction and data analysis have typical regional relevance, 
generally focusing on specific spatial units for information 
extraction. Therefore, data can be divided according to 
administrative regions, regular units, or social functional areas 
with uniform granularity and seamless continuity. Different unit 
data can be stored in the form of physical partitions, achieving 
physical separation and independence of national data volume, 
ensuring logical aggregation of data between units and physical 
separation of unit content data, and improving access efficiency 
and agility for each unit data. When accessing national data for 
information retrieval, indexing grids are formed based on the 
divided units, narrowing down the national data to several 
spatially relevant units within the target area, significantly 
reducing data scanning and access costs. 

2.3.2 Grid: For each data unit, a grid index is established with 
elements as the objects, performing grid-based location matching 
and lightweight data filtering within each unit. A large number of 
geometric elements unrelated to grid units are excluded, 
narrowing down the target data to grid-related elements, 
significantly reducing the number of patch elements involved in 
actual spatial computations, and lowering the final spatial 
computation cost. 

2.3.3 Space: At the limited spatial unit granularity level, the fast 
retrieval efficiency of spatial indexing can be utilized for precise 
spatial computations, forming the final spatial retrieval results. 
For each grid-related element, general spatial indexing and 
spatial judgment algorithms are employed for precise geometric 
computations and relationship discernments, extracting truly 
relevant elements within the scope of each target unit. The final 
data results are formed by merging the partitions unit by unit. 
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Figure 1. Multi-level grid spatial index model

Table 1. Multi-level spatial indexing framework 



3.1 Index Construction Algorithm 

Based on the general multilevel grid indexing model and 
considering the national geographical situation monitoring data, 
a multilevel grid indexing algorithm for geographical situation 
data is constructed to improve the indexing efficiency of massive 
geographical situation data. A county-level survey unit is used as 
the partition encoding algorithm, GeoSOT or Geohash as the grid 
encoding algorithm, and the common R-tree as the spatial 
indexing algorithm, forming a county-level administrative 
region-geographical grid-R-tree spatial indexing algorithm for 
geographical situation data. The multilevel indexing construction 
algorithm for national geographical situation data is shown in 
Figure 2. 

(3) Grid-level encoding and identification

Grid encoding algorithm

(3.1) Data grid encoding
Post-partition data

Record-by-record grid 
encoding

(3.2) Data grid identification

Grid field creation

Land cover record

Record-by-record  
encoding identification

(2) Partition-level storage and encoding

Data block splitting

(2.1) Data partition storage

National partition units

Data block storage

(2.2) Data partition encoding

Partition data encoding

National partition encoding

Partition encoding 
mapping

Complex patchesExtensive  range Diverse scales

(1) Nationwide massive data

(4) Feature-level index construction

Spatial indexing 
algorithm

Land cover 
polygon Full-feature index 

construction

Figure 2. Index construction algorithm 

3.1.1 County-level survey unit partition encoding algorithm: 
For the partition-level indexing method, county-level survey 
units are used as partition units to physically divide and store 
national data. The spatial range of the county-level survey unit is 
used as an irregular partition grid unit, and the data within each 
county-level survey unit is assigned a corresponding 
administrative region code, realizing the partition-level indexing 
encoding algorithm. The county-level survey unit storage grid 
encoding algorithm is: Code_partition = Code_Pac, where Pac is 
the corresponding administrative region code of the county-level 
survey unit. 

3.1.2 Multigranularity grid encoding algorithm: For the grid-
level indexing method, regular binary grids such as GeoSOT or 
Geohash are used as geographical grid partition algorithms. The 
minimum spatial bounding binary geographical grid of each 
vector feature is calculated, and the decimal geographical grid 
code is assigned to the corresponding vector feature, realizing the 
multigranularity grid encoding algorithm. Based on the 
multigranularity grid encoding algorithm, the geometric 
intersection computation of features is transformed into grid code 
character matching, greatly improving the efficiency of spatial 
intersection computation and realizing the fuzzy rapid filtering of 
spatial features. 

3.1.3 R-tree spatial indexing algorithm: For the feature-level 
spatial indexing method, the general R-tree spatial indexing 
algorithm is used for spatial encoding. 

3.2 Index Calculation Process 

Under the multilevel grid indexing framework, a hierarchical 
indexing calculation method is adopted to achieve spatial 
retrieval calculation of massive data. The indexing calculation 
method is shown in Figure 3. 

(4) Hierarchical index result aggregation

 Spatial indexing  
result aggregation

Grid indexing  
result aggregation

Partition indexing 
result aggregation

Cross geographical 
regionCross spatial scale

Cross geometric 
complexity

(1) Arbitrary spatial retrieval range input

(2) Multi-level index encoding for spatial retrieval range

(2.3) Spatial index 
computation

Spatial index 
computation

R-tree index
algorithm

Target spatial index

Partition unit intersection 
computation

(2.1) Partition encoding 
computation

National partition units

Target partition unit 
encoding

(2.2) Grid encoding 
computation

Grid encoding 
computation

Geohash encoding 
algorithm

Target range grid 
encoding

(3) Massive data ierarchical index 
computation

Partition indexing

National data

Partition 
matching

Target partition

Grid indexing

Partitioned data

Grid matching

Target grid

Grid data

Spatial matching

Target data

Spatial indexing

Figure 3. Index computation process 

3.2.1 Arbitrary spatial retrieval range input: Efficient data 
retrieval is supported for any spatial range, with efficient support 
for complex spatial ranges spanning scales, regions, and multiple 
geometric complexity. 

3.2.2 Multi-level index encoding: For the input spatial range, 
multilevel indexing encoding of the spatial retrieval range is 
performed, successively obtaining the partition unit encoding, 
grid encoding, and spatial indexing corresponding to the target 
range. 
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3.2.3 Hierarchical index computation: Based on the multi-level 
indexing computation results of the spatial retrieval unit, 
hierarchical index computations are carried out successively for 
the target data using the massive national data. 

3.2.4 Hierarchical index result aggregation: For the outcome 
data of the hierarchical indexing calculation, the results are 
summarized by partition, forming the accurate indexing result 
data of the spatial retrieval range, and realizing the multilevel 
lightweight and fast spatial indexing of massive spatial data. 

4. EXPERIMENT

Utilizing the national billion-scale geographical information data, 
this study employs the Oracle Spatial universal spatial database 
platform to perform cross-scale, cross-regional, and multi-form 
spatial range data index calculations. The computational 
efficiency of the multi-level indexing algorithm based on 
geographical grids and its applicability in different regions and 
scales are analyzed and tested. A horizontal efficiency 
comparison with the classic single-level R-tree spatial index is 
conducted, providing technical support for constructing an 
efficient online index and calculation of geographical 
information. 

4.1 Experiment Data 

4.1.1 Land cover data: Land cover data serves as the core vector 
output data for geographical information. The national surface is 
divided into 86 detailed categories, with more than 260 million 
patches. The minimum patch collection is refined to a field scale 
of 200 square meters. Complex patches, such as forests, 
grasslands, water surfaces, and roads, can have up to 100,000 
single-element nodes. These data possess typical characteristics 
such as rich information, accurate representation, full coverage, 
fine-grained collection, and massive volume, constituting one of 
the performance bottlenecks for the computation and service 
applications of geographical information. The first national 
geographical information census land cover data is used as the 
test data (Figure 4) to conduct arbitrary range index calculations 
and performance comparison tests across the nation. 

Figure 4. National land cover data distribution. 
4.1.2 County-level survey unit: Following the organization of 
collected and updated data, the national data is divided into 2,777 
county-level survey areas. County-level survey units are 
approximately equal in spatial granularity, and each unit 
objectively represents the continuous land cover within its 
respective area. County-level survey areas maintain stability 
across different years of monitoring data, making them ideal 
units for data partition organization in the database.  

4.2 Experimental Methods 

Cross-regional, multi-scale, and multi-form spatial retrieval 
ranges are used to carry out real-time spatial retrieval calculations 
for national data. Index calculation time consumption is recorded 
for different scenarios, and the computational efficiency of 
different data retrieval methods is comprehensively analyzed. 
Considering the differences in national regional characteristics 
and data granularity, rectangular and circular spatial units are 
employed. Five test areas are arbitrarily selected in the eastern, 
southern, western, northern, and central regions of the country, 
and ten progressively changing spatial retrieval units are 
constructed. A total of 100 diversified data index test units are 
created across the nation. For all index scenarios, both the multi-
level index method proposed in this study and the traditional R-
tree index method are independently calculated. The 
computational efficiency differences between the multi-level 
index method based on geographical grids and the traditional 
spatial index method in massive data indexing are compared and 
analyzed. The distribution of rectangular and circular test units, 
their spatial locations, and unit size settings are shown in Figures 
5 and 6, respectively. The spatial area, patch quantity, and 
average patch area statistics of the 100 test units are illustrated in 
Figure 7. 

Figure 5. Rectangular spatial test units: Ten levels in five 
orientations: east, south, west, north, and central (A region 
denoted as rectangle west (abbreviated as RW), B region 

denoted as rectangle central (RC), C region denoted as rectangle 
north (RN), D region denoted as rectangle east (RE), and E 

region denoted as rectangle south (RS)). In each region, ten test 
units are set according to the spatial scale, with the largest 

square unit side length being 500 km. The unit side length is 
then successively halved, and the units are numbered from 

largest to smallest as 1-10. 

. Figure 6. Circular spatial test units: Ten levels in five 
orientations: east, south, west, north, and central. A region 

denoted as circle west (abbreviated as CW), B region denoted as 
circle central (CC), C region denoted as circle north (CN), D 
region denoted as circle east (CE), and E region denoted as 

circle south (CS). The largest circular unit diameter is 500 km, 
and the unit diameter is then successively halved, with units 

numbered from largest to smallest as 1-10. 
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Figure 7. Spatial area, patch count, and average patch area of 
the 100 test units. (a) The geographical area of the 100 units, in 

thousands of square kilometers; (b) The number of surface 
cover patches contained within the 100 units, in millions; (c) 
The average area of surface cover patches within the 100 unit 

regions, in square kilometers. 

4.3 Results and Analysis 

Under the same computing platform, the calculation time 
consumption for the 100 different geographical locations, shapes, 
and granularities is recorded, and the computational efficiency 
comparison analysis is conducted. The comparison of multi-scale 
grid index calculation time consumption and conventional R-tree 
index time consumption for the 100 test units is shown in Figure 
8. The multiplicative relationship statistics between the multi-
scale grid index calculation time consumption and the
conventional R-tree index time consumption for the 100 test units
are displayed in Figure 9.

Figure 8. Comparison of computational time for multi-scale 
grid indexing and conventional R-TREE indexing for the 100 

test units. The y-axis represents the computation time, measured 
in seconds. 

Figure 9. Ratio of computational time for multi-scale grid 
indexing and conventional R-TREE indexing for the 100 test 

units. The dashed line represents the threshold line at a y-
intercept of 1.0, indicating the point where the approaches 

exhibit equal speed. 

By conducting spatial index tests and comparisons across various 
geographical regions, spatial scales, and data geometric 
complexities, it can be deduced that the multi-scale geographic 
grid index employed in this study exhibits a significantly superior 
overall performance in comparison to the R-tree index. However, 
in the case of larger area retrieval units in a circular configuration, 
the R-Tree single index approach outperforms the multi-scale 
grid approach. The main analysis results are as follows: 

4.3.1 Computation time consumption: The average time 
consumption based on the general parallel computation is 
6,154.50 seconds. The relatively stable time consumption across 
different regions, shapes, and sizes indicates that traditional 
spatial computations suffer from imbalanced computational 
problems. In the parallel computation of national ultra-large-
scale spatial data, the time consumption for different granularity 
computing units is relatively long. 

4.3.2 Parallel computation balance: The balanced parallel 
computation of the spatially adaptive multi-scale grid index has 
an average time consumption of 1,209.51 seconds. As the spatial 
location, shape, and size of the computation units change, the 
computation time consumption dynamically varies. This 
suggests that the spatially adaptive multi-scale grid index parallel 
computation method can dynamically adapt to spatial granularity 
and optimize the utilization of computational resources, resulting 
in remarkable performance improvements in national ultra-large-
scale parallel computations. 

4.3.3 Performance enhancement: The time consumption of the 
spatially adaptive multi-scale grid index is 1/5 of the general 
parallel computation, with considerable variation across different 
spatial granularities. In the best-case scenario, it is 295.90 times 
faster than the general parallel computation, achieving geometric 
performance improvement. This indicates that the balanced 
parallel computation method of the multi-scale grid index has a 
significant improvement effect on ultra-large-scale computations. 
With the county-level survey area as the spatial constraint unit, 
when spatial granularity is adaptively matched according to the 
computation scenario, this method will achieve geometric 
performance improvement in spatial parallel computations. 

5. CONCLUSIONS

In response to the challenges of efficient indexing and agile 
application for large-scale geographic spatial data, this study 
proposes a multi-level geographic grid indexing model and 
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algorithm. Building upon general geographic spatial data 
indexing, this model fully exploits the advantages of physical 
data partition indexing, administrative region business logic 
indexing, and spatial data indexing to search for hundreds of 
millions of complex land cover data points nationwide. An index 
algorithm combining macro, meso, and micro indices is proposed, 
and experimental verification is conducted on the basis of 
nationwide land cover data at the 100 million level under 
different data volumes and complexities. The results demonstrate 
that the multi-level geographic grid index proposed in this study 
achieves multi-level performance improvements compared to 
traditional single-level spatial indices. It displays significant 
potential in data management and computational analysis of 
results, such as surveying and monitoring. Further verification 
and optimization are required in order to address the inadequate 
performance of the multi-scale grid method, specifically in the 
scenario involving large-area retrieval units in a circular 
configuration. This particular case warrants additional 
investigation and improvement in future research endeavors. 

The innovative value of the geographic grid lies in addressing 
spatial expression discontinuity and projection computation 
complexities within the Euclidean framework. Under the premise 
of certain accuracy requirements, the geographic grid meeting 
accuracy demands is adopted to achieve rapid spatial expression 
and computation, thereby realizing lightweight and agile spatial 
expression and computation services. In most cases, quickly 
returning results that meet accuracy requirements is more 
practically significant for high-performance information services 
of massive spatiotemporal data than waiting for an accurate result 
after a lengthy delay. The proposed method utilizes temporal 
monitoring data for multi-level index encoding, demonstrating 
significant potential in industries such as national natural 
resource management in the era of big data. 
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